精英家教网 > 高中数学 > 题目详情
20.若a>0,b>0,且a+b=4,则下列不等式恒成立的是(  )
A.$\frac{1}{ab}>\frac{1}{2}$B.a2+b2≥8C.$\sqrt{ab}$≥2D.$\frac{1}{a}+\frac{1}{b}$≤1

分析 取特值可排除A、B、C,由二次函数的最值可证B正确.

解答 解:由题意取a=1且b=3显然满足题意,但$\frac{1}{ab}$=$\frac{1}{3}$<$\frac{1}{2}$,故A错误;
还取a=1且b=3,但有$\frac{1}{a}$+$\frac{1}{b}$=$\frac{4}{3}$>1,$\sqrt{ab}$=$\sqrt{3}$<2,故B、C错误;
对于B,∵a>0,b>0,且a+b=4,∴b=4-a,
∴a2+b2=a2+(4-a)2=2a2-8a+16=2(a-2)2+8,
由二次函数可知当a=b=2时,a2+b2取最小值8,
故有a2+b2≥8成立.
故选:B

点评 本题考查不等式的性质,涉及二次函数的最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.一公差不为0的等差数列{an}共有100项,首项为5,其第1、4、16项分布为正项等比数列{bn}的第1、3、5项.
(1)求{an}各项的和S;
(2)记{bn}的末项不大于$\frac{S}{2}$,求{bn}项数的最值N;
(3)记{an}前n项和为Sn,{bn}前N项和为TN,问:是否存在自然数m,使Sm=TN

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设等差数列{an}的公差为d,点(an,bn)在f(x)=2x的图象上,若a1=-2,点(a8,4a7)在图象上,求an的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算:
(1)$\frac{(-1+i)(2+i)}{{i}^{3}}$
(2)$\frac{1-i}{(1+i)^{2}}$+$\frac{1+i}{(1-i)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)当a=3时,求h(x)的单调区间;
(2)设h(x)有两个极值点x1,x2,且x1∈(0,$\frac{1}{2}$),若h(x1)-h(x2)>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,a,b,c是角A,B,C的对边,若a,b,c成等比数列,A=45°,则$\frac{bsinB}{c}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知虚数z满足|2z+5|=|z+10|.
(1)求|z|;
(2)是否存在实数m,是$\frac{z}{m}$+$\frac{m}{z}$为实数,若存在,求出m值;若不存在,说明理由;
(3)若(1-2i)z在复平面内对应的点在第一、三象限的角平分线上,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{2}$.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$的值;
(2)若0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,且sinβ=-$\frac{3}{5}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}中,a2=8,其前10项的和S10=185,
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取第3项,第9项,第27项…第3n项…并按原来的顺序组成一个新的数列{bn},求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案