精英家教网 > 高中数学 > 题目详情
函数f(x)=
x+1
x2+4x+7
的值域为
 
考点:函数的值域
专题:计算题,函数的性质及应用
分析:先求函数的定义域,再讨论x+1是否为零,从而分离常数及基本不等式法求值域.
解答: 解:函数f(x)=
x+1
x2+4x+7
的定义域为{x|x≥-1};
则当x=-1时,f(-1)=0;
当x>-1时,
f(x)=
x+1
x2+4x+7
=
x+1
(x+1)2+2(x+1)+4

=
1
x+1+
4
x+1
+2

∵x+1+
4
x+1
≥4;
(当且仅当x=1时,等号成立)
1
x+1+
4
x+1
+2
1
6
=
6
6

故函数f(x)=
x+1
x2+4x+7
的值域为[0,
6
6
];
故答案为;[0,
6
6
].
点评:本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
x2+2x-3(x≤0)
-1+lnx(x>0)
的零点个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号12345678910
数    学1.312.325.736.750.367.749.052.040.034.3
物    理2.39.731.022.340.058.039.060.763.342.7
学生序号11121314151617181920
数    学78.350.065.766.368.095.090.787.7103.786.7
物    理49.746.783.359.750.0101.376.786.099.799.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)在序号为1,2,3,4,5,6这6名学生中随机抽取2名,求这两名学生数学和物理都优秀的概率.
(2)根据这次抽查数据,列出2×2列联表,能否在犯错误的概率不超过0.025的前提下认为物理成绩和数学成绩有关?(下面的临界值表和公式可供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(1,3)作直线l,使它经过点(0,a)和(b,0),a,b是正整数,则直线l的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
2
3
,求
cosα-sinα
cosα+sinα
+
cosα+sinα
cosα-sinα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-|x|,若f(log2
1
m+1
)<f(2),则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵m=
3-2
2-2
,α=
-1
4
,试计算:M10α.

查看答案和解析>>

科目:高中数学 来源: 题型:

网通公司规定,市话费的计费方法为:前3分钟(含三分钟)0.22元,以后每分钟0.1元,为实现算法,输出费用,则下面给出的条件语句符合题意的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
x2
x4+2
(x≠0)的最大值及相应的x的值.

查看答案和解析>>

同步练习册答案