精英家教网 > 高中数学 > 题目详情

【题目】为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,安徽省于2012年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价0.5653元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价0.6153元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价0.8653元/度.

某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:

用户编号

1

2

3

4

5

6

7

8

9

10

年用电量(度)

1000

1260

1400

1824

2180

2423

2815

3325

4411

4600

(Ⅰ)试计算表中编号为10的用电户本年度应交电费多少元?

(Ⅱ)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列与期望;

(Ⅲ)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.

【答案】(1)2822.38元;(2)见解析;(3).

【解析】试题分析:

(Ⅰ)根据各编号为10的用户所用电量,并结合每档的电价可得所用的电费.(Ⅱ)由题意得的所有可能取值为0,1,2,3,4,然后分别求出的每个值的概率可得分布列,然后可得期望.(Ⅲ)由题意,故,

由此列出不等式,解不等式可得的范围,从而可得的值.

试题解析:

(1)因为第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4600度,

则该户本年度应交电费为 4600×0.5653 +(4200-2160)×0.05 +(4600-4200)×0.3=2822.38元

(2)设取到第二阶梯电量的用户数为,可知第二阶梯电量的用户有4户,则可取0,1,2,3,4.

,

,

的分布列为

0

1

2

3

4

所以

(3)由题意可知从全市中抽取10户的用电量为第一阶梯,满足,可知

,

解得

所以当时概率最大,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆: 上的任一点到焦点的距离最大值为3,离心率为

(1)求椭圆的标准方程;

(2)若为曲线上两点, 为坐标原点,直线 的斜率分别为,求直线被圆截得弦长的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的左右顶点,点是椭圆的上顶点,若该椭圆的焦距为,直线的斜率之积为.

(1)求椭圆的方程;

(2)是否存在过点的直线与椭圆交于两点,使得以为直径的圆经过点?若存在,求出直线的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中

(1)当时,求函数的单调区间;

(2)若对于任意,都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,F(-1, 0)是椭圆的左焦点,过点F且方向向量为的光线,经直线反射后通过左顶点D.

(I)求椭圆的方程;

(II)过点F作斜率为的直线交椭圆于A, B两点,M为AB的中点,直线OM (0为原点)与直线交于点P,若满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 满足约束条件,若取得最大值的最优解不唯一,则实数的值为__________

【答案】

【解析】由题可知若取得最大值的最优解不唯一则必平行于可行域的某一边界,如图:要Z最大则直线与y轴的截距最大即可,当a<0时,则平行AC直线即可故a=-2,当a>0时,则直线平行AB即可,故a=1

点睛:线性规划为常考题型,解决此题务必要理解最优解个数为无数个时的条件是什么,然后根据几何关系求解即可

型】填空
束】
16

【题目】《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约一,为实,一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以 分别表示三角形的面积,大斜,中斜,小斜; 分别为对应的大斜,中斜,小斜上的高;则 .若在 ,根据上述公式,可以推出该三角形外接圆的半径为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约一,为实,一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以 分别表示三角形的面积,大斜,中斜,小斜; 分别为对应的大斜,中斜,小斜上的高;则 .若在 ,根据上述公式,可以推出该三角形外接圆的半径为__________

【答案】

【解析】根据题意可知: ,故设,由 代入可得,由余弦定理可得cosA=,所以由正弦定理得三角形外接圆半径为

型】填空
束】
17

【题目】在等差数列中,已知公差 ,且 成等比数列.

(1)求数列的通项公式

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,曲线的参数方程是为参数).

Ⅰ)将曲线的参数方程化为普通方程;

Ⅱ)求曲线与曲线交点的极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数定义在上,且可以表示为一个偶函数与一个奇函数之和,设

1)求出的解析式;

2)若对于任意恒成立,求的取值范围;

查看答案和解析>>

同步练习册答案