精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且的面积为.

(1)求椭圆的标准方程;

(2)设斜率为的直线与以原点为圆心,半径为的圆交于两点,与椭圆交于两点,且,当取得最小值时,求直线的方程.

【答案】(1);(2)最小值,直线的方程为.

【解析】试题分析:(1)由三角形的面积,即可求得c=2,将点代入椭圆方程,由椭圆的性质a2=b2+c2,即可求得a和b的值,求得椭圆方程;

(2)直线的方程为,则原点到直线的距离,由弦长公式可得.将代入椭圆方程,得,得.可得.可得所求结论.

试题解析:(1)由的面积可得,即,∴.①

又椭圆过点,∴.②

由①②解得,故椭圆的标准方程为

(2)设直线的方程为,则原点到直线的距离

由弦长公式可得

代入椭圆方程,得

由判别式,解得

由直线和圆相交的条件可得,即,也即

综上可得的取值范围是

,则

由弦长公式,得

,得

,∴,则当时,取得最小值,此时直线的方程为

点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为坐标原点, 是椭圆上的点,设动点满足.

1)求动点的轨迹的方程;

2)若直线与曲线相交于 两个不同点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为:,直线的方程为.

(1)求证:直线恒过定点;

(2)当直线被圆截得的弦长最短时,求直线的方程;

(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求数列{an}的通项公式an
(2)令 ,写出Tn关于n的表达式,并求满足Tn 时n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC= ,求cosC+ sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人在连续7天的定点投篮的分数统计如下:在上述统计数据的分析中,一部分计算如右图所示的算法流程图(其中 是这7个数据的平均数),则输出的S的值是(

观测次数i

1

2

3

4

5

6

7

观测数据ai

5

6

8

6

8

8

8


A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1
(Ⅱ)若CD= a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.

(1)求抛物线方程;

(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.

查看答案和解析>>

同步练习册答案