精英家教网 > 高中数学 > 题目详情
案例分析:

一般说来,一个人的身高越高,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表.

性别

身高/cm

右手一拃长/cm

性别

身高/cm

右手一拃长/cm

152

18.5

153

16.0

156

16.0

157

20.0

158

17.3

159

20.0

160

15.0

160

16.0

160

17.5

160

17.5

160

19.0

160

19.0

160

19.0

160

19.5

161

16.1

161

18.0

162

18.2

162

18.5

163

20.0

163

21.5

164

17.0

164

18.5

164

19.0

164

20.0

165

15.0

165

16.0

165

17.5

165

19.5

166

19.0

167

19.0

167

19.0

168

16.0

168

19.0

168

19.5

170

21.0

170

21.0

170

21.0

171

19.0

171

20.0

171

21.5

172

18.5

173

解:根据上表中的数据,制成的散点图如下.

    从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢?

同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线.

同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.

同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.

同学4:从左端点开始,取两条直线,如下图.再取这两条直线的“中间位置”作一条直线.

同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多.

同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线.

同学7:先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3).求出这三个点的“平均点”为(170.3,19.9).我再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线.

同学8:取一条直线,使得在它附近的点比较多.

在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的.

练习册系列答案
相关习题

同步练习册答案