精英家教网 > 高中数学 > 题目详情
10.幂函数y=f(x)的图象经过点(4,2),则$f({\frac{1}{4}})$的值为$\frac{1}{2}$.

分析 先用待定系数法求出幂函数的解析式,再由代入法,求函数的值即可.

解答 解:设幂函数y=xα(α∈R),
其函数图象经过点(4,2),
∴4α=2,
解得α=$\frac{1}{2}$,
∴y=f(x)=x${\;}^{\frac{1}{2}}$;
∴f($\frac{1}{4}$)=($\frac{1}{4}$)${\;}^{\frac{1}{2}}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了求幂函数的解析式以及求函数值的问题,注意运用待定系数法,考查运算能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,已知点O(0,0),A(3,0),B(0,3),C(cosα,sinα).
(1)若$\overrightarrow{AC}•\overrightarrow{BC}=-1$,求$\frac{{2{{sin}^2}α+sin2α}}{1+tanα}$的值;
(2)若f(α)=-2cos2α-tsinα-t2+2在$α∈(\frac{π}{2},\frac{3π}{2})$时有最小值-1,求常数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在矩形ABCD中,AB=2,BC=1,现将△ABC沿对角线AC折起,使点B到达点B′的位置,使平面AB′C与平面ACD垂直得到三棱锥B′-ACD,则三棱锥B′-ACD的外接球的表面积为5π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB⊥AC,AB=AC=AA1,D为BC的中点.
(1)证明:A1B⊥平面AB1C;
(2)求直线A1D与平面AB1C所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若角α的终边经过点P(-1,3),则tanα的值为(  )
A.$-\frac{1}{3}$B.-3C.$-\frac{{\sqrt{10}}}{10}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=sin(x+\frac{π}{6})+sin(x-\frac{π}{6})+cosx+a$的最小值为1.
(1)求常数a的值;
(2)求函数f(x)的单调区间和对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数);在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=2sinθ;
(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线l:y=kx(x≥0)与曲线C1,C2的交点分别为A,B(A,B异于原点),当斜率$k∈[1,\sqrt{3})$时,求|OA|•|OB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=2x3+x,实数m满足f(m2-2m)+f(m-6)<0,则m的取值范围是(-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,当$x∈(0,\frac{π}{2})$时,与函数$y={x^{-\frac{1}{3}}}$单调性相同的函数为(  )
A.y=cosxB.$y=\frac{1}{cosx}$C.y=tanxD.y=sinx

查看答案和解析>>

同步练习册答案