精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,对称轴为坐标轴,左、右焦点分别为

是椭圆上的一点,的周长为6,离心率为.

(1)求椭圆的方程;

(2)为椭圆上的定点,E,F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率

互为相反数,证明直线EF的斜率为定值,并求出这个定值。 

解:(1)由题意得解得

所以椭圆方程为  .                    

(2)设直线AE方程:得,代入得       

设E(),F().因为点A(1,)在椭圆上,所以,     

又直线AF的斜率与AE的斜率互为相反数,在上式中以,可得

,       所以直线EF的斜率

即直线EF的斜率为定值,其值为。                         

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,离心率为
2
2
,且椭圆经过圆C:x2+y2-4x+2
2
y=0的圆心C.
(1)求椭圆的方程;
(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在坐标轴上,直线y=2x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,对称轴为坐标轴,左焦点为F1(-3,0),右准线方程为x=
253

(1)求椭圆的标准方程和离心率e;
(2)设P为椭圆上第一象限的点,F2为右焦点,若△PF1F2为直角三角形,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,且椭圆过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,一个焦点F1(0,-2
2
),且离心率e满足:
2
3
,e,
4
3
成等比数列.
(1)求椭圆方程;
(2)直线y=x+1与椭圆交于点A,B.求△AOB的面积.

查看答案和解析>>

同步练习册答案