精英家教网 > 高中数学 > 题目详情
双曲线
x2
16
-
y2
9
=1的渐近线方程为(  )
A、y=±
4
3
x
B、y=±
3
4
x
C、y=±
3
5
x
D、y=±
4
5
x
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出双曲线的a,b,再由渐近线方程y=±
b
a
x,即可得到所求.
解答: 解:双曲线
x2
16
-
y2
9
=1的a=4,b=3,
由双曲线的渐近线方程y=±
b
a
x,
则所求渐近线方程为y=±
3
4
x.
故选B.
点评:本题考查双曲线的方程和性质,考查渐近线方程的求法,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(1,1),b=(x2,x+2),若
a
b
共线,则实数x的值为(  )
A、-1B、2
C、-1或2D、1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人向同一目标射击,命中率分别为0.4、0.5,则恰有一人命中的概率为(  )
A、0.9B、0.2
C、0.7D、0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

某果林培育基地从其培育的一批幼苗中随机选取了100株,测量其高度(单位:厘米),并将这些数据绘制成频率分布直方图(如图).若要从高度在[120,130),[130,140),[140,150]三组内的幼苗中,用分层抽样的方法选取30株送给友好单位,则从高度在[140,150]内的幼苗中选取的株数应为(  )
A、4B、5C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an=
1
n
ln(1+
1
n
)+
1
2n3
-
1
3n4
.数列{an}的前n项和为Sn.求证Sn
33
20

查看答案和解析>>

科目:高中数学 来源: 题型:

化成Asin(ωx+φ)+B的形式.
(1)f(x)=4cosxsin(x+
π
6
)-1
(2)f(x)=
3
sinxcosx-cos2x+
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

先阅读下列不等式的证法,再解决后面的问题:
已知a1,a2∈R,a1+a2=1,求证:a12+a22
1
2

证明:构造函数f(x)=(x-a12+(x-a22,f(x)=2x2-2(a1+a2)x+a12+a22=2x2-2x+a12+a22
因为对一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,从而a12+a22
1
2

(1)已知a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述证法,对你的推广的结论进行证明;
(3)若
1-x
+
2-y
+
3-z
=1,求x+y+z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6张卡片,今从每个袋中各取一张卡片,则两数之间和能被3整除的概率为(  )
A、
1
3
B、
1
4
C、
2
9
D、
1
12

查看答案和解析>>

科目:高中数学 来源: 题型:

用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:
①若a∥b,b∥c,则a∥c;    ②若a⊥b,b⊥c,则a⊥c;
③若a∥γ,b∥γ,则a∥b;  ④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是(  )
A、①②B、②③C、①④D、③④

查看答案和解析>>

同步练习册答案