精英家教网 > 高中数学 > 题目详情

【题目】已知单调递增的等比数列满足,且 的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列满足,求数列的通项公式;

(Ⅲ)在(Ⅱ)的条件下,设,问是否存在实数使得数列)是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.

【答案】(Ⅰ);(Ⅱ); (Ⅲ).

【解析】试题分析:

()由题意求得 ,∴

()利用题意错位相减可得

()题中不等式转化为,分类讨论当为大于或等于4的偶数,当为大于或等于3的奇数时,两种情况可得的取值范围是.

试题解析:

(Ⅰ)设此等比数列为 ,…,其中 .

由题意知: ,①

.②

①得

,解得.

∵等比数列单调递增,∴ ,∴

(Ⅱ)由(Ⅰ)可知),

),

),

,即),

时, ,∴

(Ⅲ)∵

∴当时,

依据题意,有

①当为大于或等于4的偶数时,有恒成立,

增大而增大,

则当且仅当时, ,故的取值范围为

②当为大于或等于3的奇数时,有恒成立,且仅当时, ,故的取值范围为

又当时,由,得

综上可得,所求的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为a1= ,公比q= 的等比数列,设bn+2=3 an(n∈N*),数列{cn}满足cn=anbn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若cn m2+m﹣1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=a,Sn是数列{an}的前n项和,且满足:Sn2=3n2an+Sn12 , an≠0,n≥2,n∈N*
(1)若数列{an}是等差数列,求a的值;
(2)确定a的取值集合M,使a∈M时,数列{an}是递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论的单调性;

(Ⅱ)证明:当时,函数)有最小值.记的最小值为,求的值域;

(Ⅲ)若存在两个不同的零点 ),求的取值范围,并比较与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中, , 分别为的中点,对于常数,在梯形的四条边上恰好有8个不同的点,使得成立,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,M和N分别为BC、C1C的中点,那么异面直线MN与AC所成的角等于(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(3,3)、B(5,2)到直线l的距离相等,且直线l经过两直线l1:3x﹣y﹣1=0和l2:x+y﹣3=0的交点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点A(a,a)可作圆x2+y2﹣2ax+a2+2a﹣3=0的两条切线,则实数a的取值范围为(
A.a<﹣3或a>1
B.a<
C.﹣3<a<1 或a>
D.a<﹣3或1<a<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:
(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;
(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.

查看答案和解析>>

同步练习册答案