精英家教网 > 高中数学 > 题目详情

【题目】把函数的图象向右平移一个单位,所得图象与函数的图象关于直线对称;已知偶函数满足,当时,;若函数有五个零点,则的取值范围是( )

A. B. C. D.

【答案】C

【解析】分析:由题意分别确定函数f(x)的图象性质和函数h(x)图象的性质,然后数形结合得到关于k的不等式组,求解不等式组即可求得最终结果.

详解:曲线右移一个单位,得

所以g(x)=2xh(x-1)=h(-x-1)=h(x+1),则函数h(x)的周期为2.

x[0,1]时,

y=kf(x)-h(x)有五个零点,等价于函数y=kf(x)与函数y=h(x)的图象有五个公共点.

绘制函数图像如图所示,由图像知kf(3)<1kf(5)>1,即:

,求解不等式组可得:.

的取值范围是

本题选择C选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,设函数的所有零点构成集合,函数的所有零点构成集合

1)试求集合

2)令,求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,EFG分别是ABCC1AD的中点.

1)求异面直线EGB1C所成角的大小;

2)棱CD上是否存在点T,使AT∥平面B1EF?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:

月份

2017.8

2017.9

2017.10

2017.11

2017.12

2018.1

月份代码x

1

2

3

4

5

6

市 场占有率y(%)

11

13

16

15

20

21

(1)请在给出的坐标纸中作出散点图;

(2)求y关于x的线性回归方程,并预测该公司20182月份的市场占有率;

参考公式:回归直线方程为 其中:,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.

(1)求乙离子残留百分比直方图中的值;

(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若存在三个不同实数使得,则的取值范围是(

A.B.C.D.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图1产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)

1)分别将两种产品的利润表示为投资的函数关系,并写出它们的函数关系式;

2)该企业已筹集到10万元资金,全部投入到两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的个数①“”的否定是“”;②用相关指数可以刻画回归的拟合效果,值越小说明模型的拟合效果越好;③命题“若,则”的逆命题为真命题;④若的解集为,则.

A. B. C. D.

查看答案和解析>>

同步练习册答案