精英家教网 > 高中数学 > 题目详情
3.已知三棱锥的三视图如图所示,则该三棱锥的体积是(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.6

分析 由已知中的三视图,求出棱锥的底面积和高,进而可得棱锥的体积.

解答 解:由已知中的三视图,可得:
棱锥的底面积S=$\frac{1}{2}$×2×4$\sqrt{3}$=4$\sqrt{3}$;
高h=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$,
故棱锥的体积V=$\frac{1}{3}Sh$=4,
故选:B.

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\frac{1}{2}$x2-ex,g(x)=x-elnx.
(1)求函数g(x)的极值;
(2)若对任意的x∈[$\frac{1}{e}$,+∞),方程f(x)=ag(x)有且只有两个实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F(2,0),设A、B为双曲线上关于原点对称的两点,AF的中点为M,BF的中点为N,若原点O在以线段MN为直径的圆上,直线AB的斜率为$\frac{{3\sqrt{7}}}{7}$,则双曲线的离心率为(  )
A.4B.2C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.两条平行直线l1:x+2y+5=0和l2:4x+8y+15=0的距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F1,F2为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,P,Q分别为双曲线左、右支上的点,若$\overrightarrow{Q{F_2}}$=2$\overrightarrow{P{F_1}}$,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$═0,则双曲线的离心率为(  )
A.$\frac{{\sqrt{15}}}{3}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,已知AE与平面ABC所成的角为θ,且$tanθ=\frac{{\sqrt{3}}}{2}$;
(1)求证:平面ACD⊥平面ADE
(2)记AC=x,V(x)表示三棱锥A-CBE的体积,求V(x)的表达式及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中既是奇函数又在定义域上为增函数的是(  )
A.f(x)=3x+1B.f(x)=$\frac{1}{x}$C.f(x)=1-$\frac{1}{x}$D.f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线l1:2x-y+1=0与直线l2:x-y-2=0的夹角大小为arctan$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b2+c2=a2+bc.
(1)求角A的大小;
(2)若a=$\sqrt{7}$,b=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案