精英家教网 > 高中数学 > 题目详情

【题目】如图三棱柱中,侧面为菱形,

(1)证明:

(2)若 ,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)连接,交于点,连接,可证平面,可得 ,进而可得;(2)以为坐标原点, 的方向为轴正方向, 为单位长,建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.

试题解析:(1)连接,交于点,连接,因为侧面为菱形,所以,且的中点,又,所以平面.由于平面,故,又,故

(2)因为,且的中点,所以

又因为,所以,故,从而两两相互垂直, 为坐标原点, 的方向为轴正方向, 为单位长,建立空间直角坐标系(图略)

因为,所以为等边三角形,又,则 ,设是平面的法向量,则

,即,设是平面的法向量,则,同理可取

所以可取

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,求曲线处的切线方程;

(Ⅱ)当时,讨论函数的单调性;

(Ⅲ)设斜率为的直线与函数的图象交于 两点,其中,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中茭草形段第一个问题今有茭草六百八十束,欲令落一形埵(同垛)之.问底子(每层三角形边茭草束数,等价于层数)几何?中探讨了垛枳术中的落一形垛(落一形即是指顶上1束,下一层3束,再下一层6束,,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层茭草束数),则本问题中三角垛底层茭草总束数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中, 平面的中点 上的点且上的高.

(1)证明: 平面

2)若,求三棱锥的体积;

3)在线段上是否存在这样一点使得平面?若存在,说出点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线的准线轴交于椭圆的右焦点的左焦点.椭圆的离心率为,抛物线与椭圆交于轴上方一点,连接并延长其交于点 上一动点,且在之间移动.

(1)当取最小值时,求的方程;

(2)若的边长恰好是三个连续的自然数,当面积取最大值时,求面积最大值以及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设O为坐标原点,点P的坐标(x﹣2,x﹣y)
(1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对应的边为a,b,c
(1)若 ,求A的值;
(2)若 ,且△ABC的面积 ,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,6sinA+4cosB=1,且4sinB+6cosA=5 ,则cosC=(
A.
B.±
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为,设直线的斜率是,且与椭圆交于 两点.

Ⅰ)求椭圆的标准方程.

Ⅱ)若直线轴上的截距是,求实数的取值范围.

Ⅲ)以为底作等腰三角形,顶点为,求的面积.

查看答案和解析>>

同步练习册答案