精英家教网 > 高中数学 > 题目详情
9.f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x.
(1)求f(x)的表达式;
(2)解不等式f(x+2)<5.

分析 (1)根据函数偶函数的性质,即可求f(x)的表达式;
(2)利用对称性即可得到结论.

解答 解:(1)若x<0,则-x>0,
∵当x≥0时,f(x)=x2-4x,
∴当-x>0时,f(-x)=x2+4x,
∵f(x)是定义域为R的偶函数,
∴f(-x)=x2+4x=f(x),
即当x<0时,f(x)=x2+4x,
∴f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x,x≥0}\\{{x}^{2}+4x,x<0}\end{array}\right.$;
(2)当x≥0时,由f(x)=x2-4x=5,解得x=5或x=-1(舍去),则根据对称性可得,当x<0时,f(-5)=5,
作出函数f(x)的图象如图:
则不等式f(x+2)<5等价为-5<x+2<5,
即-7<x<3,
则不等式的解集为(-7,3).

点评 本题主要考查函数解析式的求解以及不等式的解法,利用偶函数的对称性和数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,已知矩形ABCD是圆柱O1O2的轴截面,N在上底面的圆周O2上,AC,BD相交于点M.
(Ⅰ)求证:平面ADN⊥平面CAN;
(Ⅱ)已知圆锥MO1和圆锥MO2的侧面展开图恰好拼成一个半径为2的圆,直线BC与平面CAN所成角的正切值为$\frac{\sqrt{3}}{6}$,求∠CDN的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示是一个几何体的三视图,则这个几何体外接球的表面积是(  )
A.16πB.C.12πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F1,F2分别是双曲线3x2-y2=9的左右焦点,若P在双曲线上且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$的值为  (  )
A.$2\sqrt{5}$B.$2\sqrt{3}$C.$4\sqrt{3}$D.$4\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,设正方体ABCD-A1B1C1D1的棱长为1,则直线B1C与平面AB1D1所成的角的正弦值是(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A的概率为(  )
A.$\frac{{{C}_{4}^{3}C}_{48}^{2}}{{C}_{52}^{5}}$B.$\frac{{{C}_{48}^{3}C}_{4}^{2}}{{C}_{52}^{5}}$
C.1-$\frac{{{C}_{48}^{1}C}_{4}^{4}}{{C}_{52}^{5}}$D.$\frac{{{C}_{4}^{3}C}_{48}^{2}{{+C}_{4}^{4}C}_{48}^{1}}{{C}_{52}^{5}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(1)(0.027)${\;}^{-\frac{1}{3}}$-($\frac{1}{8}$)-2+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-(1+$\sqrt{5}$)0
(2)$\frac{1}{2}$lg25+2lg$\sqrt{2}$-lg$\sqrt{0.1}$+log432.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,已知正四棱锥P-ABCD的所有棱长都为1,且E、F分别为AB,PD的中点.
(1)求证:AF∥平面PCE;
(2)求直线AF与直线CE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若椭圆$\frac{{x}^{2}}{3}$+$\frac{4{y}^{2}}{{p}^{2}}$=1(p>0)的左焦点在抛物线y2=2px的准线上,则p为$\sqrt{6}$.

查看答案和解析>>

同步练习册答案