精英家教网 > 高中数学 > 题目详情
已知集合M是满足下列条件的函数f(x)的全体:(1)当x∈[0,+∞)时,函数值为非负实数;(2)对于任意的s、t,都有f(s)+f(t)≤f(s+t);在三个函数f1(x)=x,f2(x)=2x-1,f3(x)=ln(x+1)中,属于集合M的是
f1(x)=x
f1(x)=x
分析:对于三个函数f1(x)=x,f2(x)=2x-1,f3(x)=ln(x+1)一一加以验证:(1)当x∈[0,+∞)时,函数值为非负实数成立;;(2)对于任意的s、t,都有f(s)+f(t)=s+t,f(s+t)=s+t,都有f(s)+f(t)≤f(s+t)即可.
解答:解:A:对于函数f1(x)=x,:(1)当x∈[0,+∞)时,函数值为非负实数成立;(2)对于任意的s、t,都有f(s)+f(t)=s+t,f(s+t)=s+t,都有f(s)+f(t)≤f(s+t);故f1(x)=x属于集合M;
B:对于函数f2(x)=2x-1,:(1)当x∈[0,+∞)时,函数值2x-1为非负实数成立.(2)但对于任意的s、t,都有f(s)+f(t)=2s+2t-2,f(s+t)=2s+t-1,不是都有f(s)+f(t)≤f(s+t),举例,将x=-1和1代入,便可得出f2(x)=2x-1不属于M.
C:对于函数f3(x)=ln(x+1),:(1)当x∈[0,+∞)时,函数值f3(x)=ln(x+1)为非负实数成立;(2)但对于任意的s、t,都有ln(s+1)+ln(t+1)=ln(s+1)(t+1)=ln(st+1+s+t)>=ln(1+s+t),故f3(x)=ln(x+1)属于集合M;
故答案为:f1(x)=x
点评:本题主要考查了元素与集合关系的判断,解答的关键是利用函数的性质及运算法则,另外注意特殊值的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
1
x
是否属于集合M?说明理由;
(2)设函数f(x)=lg
a
x2+1
∈M
,求a的取值范围;
(3)设函数y=2x图象与函数y=-x的图象有交点,证明:函数f(x)=2x+x2∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T•f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对定义域中的任意x,等式f(kx)=
k2
+f(x)恒成立.
(1)判断一次函数f(x)=ax+b(a≠0)是否属于集合M;
(2)证明函数f(x)=log2x属于集合M,并找出一个常数k;
(3)已知函数f(x)=logax( a>1)与y=x的图象有公共点,证明f(x)=logax∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列条件的函数f(x)的全体;
①当x∈[0,+∞)时,函数值为非负实数;
②对于任意的s、t∈x[0,+∞),λ>0,都有
f(x)+λf(t)
1+λ
≤f(
s+λt
1+λ
)

在三个函数f1(x)=x-1,f2(x)=2x-1f3(x)=ln
x+1
中,属于集合M的是
f3(x)
f3(x)
(写出您认为正确的所有函数.)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区三模)已知集合M是满足下列两个条件的函数f(x)的全体:①f(x)在定义域上是单调函数;②在f(x)的定义域内存在闭区间[a,b],使f(x)在[a,b]上的值域为[
a
2
 , 
b
2
]
.若函数g(x)=
x-1
+m
,g(x)∈M,则实数m的取值范围是
(0 , 
1
2
]
(0 , 
1
2
]

查看答案和解析>>

同步练习册答案