精英家教网 > 高中数学 > 题目详情
15.食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).该食品在0℃的保鲜时间是192小时,在16℃的保鲜时间是12小时,若要使该食品的保鲜时间至少是96小时,则储存温度x最大不能高于4℃.

分析 由题意可得,x=0时,y=192;x=22时,y=48.代入函数y=ekx+b,解方程,结合指数幂的运算法则进行求解即可.

解答 解:y=ekx+b (e=2.718…为自然对数的底数,k,b为常数).
当x=0时,eb=192,
当x=16时e16k+b=12,
∴e16k=$\frac{12}{192}$=$\frac{1}{16}$,
即e4k=$\frac{1}{2}$,eb=192,
若ekx+b=96,
则ekx•eb=96,
即ekx•192=96,
即ekx=$\frac{1}{2}$,
∵e4k=$\frac{1}{2}$,
∴4k=kx,
则x=4,即储存温度x最大不能高于4℃,
故答案为:4.

点评 本题考查函数的解析式的求法和运用,考查运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,长方体ABCD-A1B1C1D1中,AB=16,AD=10,AA1=6,点P在棱C1D1上,且D1P=6.
(1)求三棱锥P-A1CD的体积;
(2)请作图:经过点P在上底面内画一条直线和PB垂直;
(3)请作图:经过点P作长方体的一个截面,且截面图形为正方形.(注意:要求写出作法,明确所作直线与棱的交点的位置,不需要给出证明过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x<3,x∈N},B={(a,b)|a+b=2,a,b∈A},试用列举法表示集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\frac{3}{{2}^{x}-1}$+k是奇函数,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)若6x=24y=12,求$\frac{1}{x}$+$\frac{1}{y}$的值;
(2)解方程:1og2(2x+8)=x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的长轴为4,且过点$A(\sqrt{2},1)$
(1)求椭圆C的方程;
(2)设点O为原点,若点P在曲线C上,点Q在直线y=2上,且OP⊥OQ,试判断直线PQ与圆x2+y2=2的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某高三年级从甲(文)乙(理)两个年级组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分:100分)的茎叶图如图所示,其中甲组学生的平均分是85分,乙组学生成绩的中位数是83分.
(1)求x和y的值;
(2)从成绩在90分以上的学生中随机取两名学生,求甲组至少有一名学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一焦点.现在设有一个水平放置的椭圆形台球盘,满足方程$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,点A、B是它的两个焦点,当静止的小球放在A处,从点A沿直线出发,经椭圆壁反弹后,再回到点A时,小球经过的路程是(  )
A.20B.18C.2D.以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数据x1,x2,…,x8的方差为16,则数据2x1+1,2x2+1,…,2x8+1的标准差为8.

查看答案和解析>>

同步练习册答案