精英家教网 > 高中数学 > 题目详情
6.如图,在四棱锥A-BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,BC=2,M,D分别为AB1,CC1的中点.
(Ⅰ)求证:BD⊥AB1
(Ⅱ)求三棱锥M-ABD的体积.

分析 (1)取BC中点E,连接AE,B1E,则BD⊥平面AEB1,从而得出BD⊥AB1
(2)设BD与B1E交点为F,则三棱锥M-ABD可分解成两个小棱锥,即棱锥B-AMF和棱锥D-AMF,两个小棱锥底面相同,高度之和为BD,故只需计算△AMF的面积就可以求出大棱锥的体积.

解答 解:(1)取BC中点E,连接AE,B1E,设BD与B1E交点为F.
∵△ABC是等边三角形,∴AE⊥BC,
∵平面ABC⊥平面BCC1B1,平面ABC∩平面BCC1B1=BC,∴AE⊥平面BCC1B1
∵BD?平面BCC1B1,∴AE⊥BD.
∵四边形BCC1B1是正方形,M,D分别为AB1,CC1的中点,∴BE=DM=$\frac{1}{2}$BC=1,BB1=BC=2,∠BCD=∠B1BC=90°,
∴△BCD≌△B1BE,∴∠CBD=∠BB1E,
∵∠CBD+∠B1BF=90°,∴∠BB1E+∠B1BF=90°,∴∠BFB1=90°,∴B1E⊥BD.
∵AE?平面AB1E,BE?平面AB1E,AE∩BE=E,∴BD⊥平面AB1E,
∵AB1?平面AB1E,∴BD⊥AB1
(2)连接AF,MF,
∵AB=BB1,∴△ABB1是等腰三角形,∵M是AB1的中点,∴BM⊥AB1
又∵BD⊥AB1.BD?平面BDM,BM?平面BDM,BM∩BD=B,∴AB1⊥平面BDM,
∵MF?平面BDM,∴MF⊥AB1.∴△B1MF∽△B1EA,∴$\frac{MF}{AE}$=$\frac{{B}_{1}M}{{B}_{1}E}$,
∵BC=2,∴AE=$\sqrt{3}$,BD=B1E=$\sqrt{5}$,AB1=2$\sqrt{2}$,∴AM=B1M=$\frac{1}{2}$AB1=$\sqrt{2}$,
∴MF=$\frac{AE•{B}_{1}M}{{B}_{1}E}$=$\frac{\sqrt{30}}{5}$.
∴S△AMF=$\frac{1}{2}$AM•MF=$\frac{\sqrt{15}}{5}$.
∴V棱锥M-ABD=V棱锥B-AMF+V棱锥D-AMF=$\frac{1}{3}$•S△AMF•BF+$\frac{1}{3}$•S△AMF•DF=$\frac{1}{3}$•S△AMF•BD=$\frac{1}{3}$×$\frac{\sqrt{15}}{5}$×$\sqrt{5}$=$\frac{\sqrt{3}}{3}$.

点评 本题考查了线面平行的性质与判断和棱锥的体积求法,将要求的棱锥分解成两个同底小棱锥是解题的关键,计算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.己知双曲线和椭圆2x2+y2=8有公共焦点,求以它们交点为顶点的四边形面积最大时双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某公司一年需分x批次购买某种货物,其总运费为$\frac{{{x^2}-2x+201}}{x-1}$万元,一年的总存储费用为x万元,要使一年的总运费与总存储费用之和最小,则批次x等于(  )
A.10B.11C.40D.41

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列四组数:(1)$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$; (2)2,$-2\sqrt{2}$,4;(3)a2,a4,a8;(4)lg2,lg4,lg8;那么(  )
A.(1)是等差数列,(2)是等比数列B.(2)和(3)是等比数列
C.(3)是等比数列,(4)是等差数列D.(2)是等比数列,(4)是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}中,an=11-5n,则数列{|an|}的前15项和为(  )
A.442B.449C.428D.421

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\left\{{\begin{array}{l}{x-5(x≥6)}\\{{x^2}+1(x<6)}\end{array}}\right.$,求f(f(3))的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}$+$\frac{5}{n}$的最小值为(  )
A.$1+\frac{{\sqrt{5}}}{3}$B.$\frac{7}{4}$C.2D.$\frac{11}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{ln(x+1)}{\sqrt{-{x}^{2}-3x+4}}$的定义域为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将函数$f(x)=Asin(ωx+φ)(A>0,ω>0,-\frac{π}{2}<φ<\frac{π}{2})$图象上每一点的横坐标变为原来的2倍(纵坐标不变),然后把所得图象上的所有点沿x轴向右平移$\frac{π}{3}$个单位,得到函数y=2sinx的图象,则f(φ)=0.

查看答案和解析>>

同步练习册答案