【题目】已知,当时,.
(Ⅰ)若函数过点,求此时函数的解析式;
(Ⅱ)若函数只有一个零点,求实数的值;
(Ⅲ)设,若对任意实数,函数在上的最大值与最小值的差不大于1,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ)或;(Ⅲ)
【解析】
试题(Ⅰ)将点 代入可得函数的解析式;(Ⅱ)函数有一个零点,即 ,根据对数运算后可得 ,将问题转化为方程有一个实根,分 和 两种情况,得到 值,最后再代入验证函数的定义域;(Ⅲ)首先根据单调性的定义证明函数的单调性,再根据函数的最大值减最小值 整理为 ,对任意 恒成立, 时,区间为函数的单调递增区间,所以只需最小值大于等于0,求解 的取值范围.
试题解析:(Ⅰ)函数过点,
, ,
此时函数
(Ⅱ)由得,
化为,
当时,可得,
经过验证满足函数只有一个零点;
当时,令解得,可得,
经过验证满足函数只有一个零点,
综上可得:或.
(Ⅲ)任取且,则,
,即,
在上单调递减.
函数在区间上的最大值与最小值分别为,
,
整理得对任意恒成立,
令,
函数在区间上单调递增,
,即,解得,
故实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费的标准是:重量不超过的包裹收费10元;重量超过的包裹,在收费10元的基础上,每超过(不足,按计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
公司对近60天,每天揽件数量统计如下表:
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是决策者,是否裁减工作人员1人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市2011年至2017年新开楼盘的平均销售价格(单位:千元/平方米)的统计数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售价格 | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求关于x的线性回归方程;
(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。
附:参考公式: ,,其中为样本平均值。
参考数据: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.
(1)求该网民至少购买4种商品的概率;
(2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
下图是某市10月1日—20日AQI指数变化趋势:
下列叙述错误的是
A. 这20天中AQI指数值的中位数略高于100
B. 这20天中的中度污染及以上的天数占
C. 该市10月的前半个月的空气质量越来越好
D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体中,若棱长为,点分别为线段、上的动点,则下列结论正确结论的是( )
A.面B.面面
C.点F到面的距离为定值D.直线与面所成角的正弦值为定值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com