精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为矩形,侧面为正三角形,,平面平面为棱上一点(不与重合),平面交棱于点.

1)求证:

2)若二面角的余弦值为,求点到平面的距离.

【答案】(1)证明见解析;(2).

【解析】

1)先根据线面平行判定定理得平面,再根据线面平行性质定理得结果;

2)取的中点,根据面面垂直性质定理得平面,再根据条件建立空间直角坐标系,设立各点坐标,利用向量数量积解得平面的一个方向量,再利用向量夹角公式以及二面角与向量夹角关系列方程,解得E点坐标,最后根据向量求点面距,即得结果.

1底面为矩形,.

平面平面平面.

平面,平面平面.

2)取的中点,连接,过点于点.

侧面为正三角形,.

平面平面且交线为

平面为矩形,

如图所示,建立以所在直线为轴,轴,轴的空间直角坐标系

.

,又.

.

设平面的法向量为

平面的一个法向量.

又易知是平面的一个法向量,

解得:.

平面的一个法向量

到平面的距离为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】把一个均匀的正方体骰子抛掷两次,观察出现的点数,记第一次出现的点数为,第二次出现的点数为,设直线,直线.

1)求直线和直线没有交点的概率;

2)求直线和直线的交点在第一象限的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和,对任意,都有为常数).

1)当时,求

2)当时,

)求证:数列是等差数列;

)若数列为递增数列且,设,试问是否存在正整数(其中),使成等比数列?若存在,求出所有满足条件的数组;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)令

时,求函数在点处的切线方程;

时,恒成立,求的所有取值集合与的关系;

(Ⅱ)记,是否存在,使得对任意的实数,函数上有且仅有两个零点?若存在,求出满足条件的最小正整数,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处有相同的切线,求函数的极值;

2)若时,不等式为自然对数的底数,)上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD为直角梯形,平面ABCD.

1)求PA与平面PCD所成角的正弦值;

2)棱PD上是否存在一点E,满足?若存在,求AE的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,椭圆上的点到左焦点的最小值为.

(1)求椭圆的方程;

(2)已知直线轴交于点,过点的直线交于两点,点为直线上任意一点,设直线与直线交于点,记的斜率分别为,则是否存在实数,使得恒成立?若是,请求出的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动.在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论.若根据欧拉得出的结论,估计10000以内的素数的个数为(素数即质数,,计算结果取整数)

A. 1089 B. 1086 C. 434 D. 145

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:,其中.

(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.

(2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.

查看答案和解析>>

同步练习册答案