精英家教网 > 高中数学 > 题目详情
已知三棱锥P-ABC的四个顶点均在球心为O半径为1的球面上,且满足PA、PB、PC两两垂直,当PC•AB的最大值时,三棱锥O-PAB的高为(  )
A、
3
3
B、
2
2
C、
2
D、
2
3
考点:棱锥的结构特征
专题:空间位置关系与距离
分析:设PA=a,PB=b,PC=c,由题设可知,三棱锥就是内接球的长方体的一部分,其体对角线就是球的直径2.
所以a2+b2+c2=4,利用基本不等式得到PC•AB=c
a2+b2
≤2.而三棱锥O-PAB的高为
1
2
c.
解答:解:设PA=a,PB=b,PC=c,由题设可知,三棱锥就是内接球的长方体的一部分,其体对角线就是球的直径2.
∴a2+b2+c2=4.
∴4≥2c
a2+b2

∴c
a2+b2
≤2,当且仅当a2+b2=c2=2,即c=
2

∴PC•AB=c
a2+b2
取到最大值2,
当PC•AB的最大值时,三棱锥O-PAB的高为
c
2
=
2
2

故选B.
点评:本题考查了三条棱两两垂直的三棱锥与长方体的关系以及与外接球的关系,考查了学生的空间想象能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={x-1,x2-1},则x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(3,4),B(4,3),若点P(a,b)在线段AB上运动,则
b
a
的取值范围是(  )
A、(-∞,
3
5
]∪[
5
3
,+∞]
B、(-∞,
3
4
]∪[
4
3
,+∞]
C、[
3
5
5
3
]
D、[
3
4
4
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,前n项和为Sn,若a1=2,a2+a3=10,则S6-S3等于(  )
A、30B、36C、42D、44

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={1,2,3,4,5},集合M={4,5},则∁UM=(  )
A、{5}
B、{4,5}
C、{1,2,3}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,复数
4+2i
1-2i
-(1-i)2-4i=(  )
A、0B、2C、-4iD、4i

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC=2
3
,AC=2,S△ABC=
6
,则∠C等于(  )
A、
π
4
B、
π
3
C、
π
4
4
D、
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈(0,
π
2
),且sinx<cosx,则x的取值范围是(  )
A、(0,
π
4
]
B、(0,
π
4
C、(
π
4
π
2
D、[
π
4
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点.且∠F1PF2=
π
3
,则椭圆和双曲线的离心率的倒数之和的最大值为(  )
A、
4
3
3
B、
2
3
3
C、3
D、2

查看答案和解析>>

同步练习册答案