精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线.

(1)求的普通方程和的直角坐标方程;

(2)若曲线交于两点,的中点为,点,求的值.

【答案】1的普通方程为的直角坐标方程为;(23.

【解析】

1)直接消去参数可得C1的普通方程;结合ρ2x2+y2xρcosθC2的直角坐标方程;(2)将两圆的方程作差可得直线AB的方程,写出AB的参数方程,与圆C2联立,化为关于t的一元二次方程,由参数t的几何意义及根与系数的关系求解.

1)曲线的普通方程为.

,得曲线的直角坐标方程为.

2)将两圆的方程作差得直线的方程为.

在直线上,设直线的参数方程为为参数),

代入化简得,所以.

因为点对应的参数为

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点恰好是椭圆的右焦点.

1)求实数的值及抛物线的准线方程;

2)过点任作两条互相垂直的直线分别交抛物线点,求两条弦的弦长之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1100名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:

分组

频数(单位:名)

使用“余额宝”

使用“财富通”

使用“京东小金库”

40

使用其他理财产品

60

合计

1100

已知这1100名市民中,使用“余额宝”的人比使用“财富通”的人多200名.

(1)求频数分布表中的值;

(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为,“京东小金库”的平均年化收益率为,有3名市民,每个人理财的资金有10000元,且分别存入“余额宝”“财富通”“京东小金库”,求这3名市民2018年理财的平均年化收益率;

(3)若在1100名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取5人,然后从这5人中随机选取2人,求“这2人都使用‘财富通’”的概率.

注:平均年化收益率,也就是我们所熟知的利率,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线 与椭圆交于两点,点(0,1),且=,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,平面平面.

(1)求证:平面平面

(2)若与平面所成的线面角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.

拥有驾驶证

没有驾驶证

合计

得分优秀

得分不优秀

25

合计

100

(1)补全上面的列联表,并判断能否有超过的把握认为“安全意识优秀与是否拥有驾驶证”有关?

(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线方程;

2)讨论函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,亚洲热带地区广泛栽培.槟榔是重要的中药材,南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班的学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名学生进行调查,经他们平均每周咀嚼槟榔的颗数作为样本,绘制成如图所示的茎叶图(图中的茎表示十位数字,叶表示个位数字).

(1)你能否估计哪个班的学生平均每周咀嚼槟榔的颗数较多?

(2)在被抽取的10名学生中,从平均每周咀嚼槟榔的颗数不低于20颗的学生中随机抽取3名学生,求抽到班学生人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查了解某高等院校毕业生参加工作后,从事对工作与大学所学专业是否专业对口,该校随机调查了80位该校2015年毕业的大学生,得到具体数据如下表:

(1)能否在犯错误的概率不超过的前提下,认为“毕业生从事的工作与大学所学专业对口与性别有关?”

参考公式:

附表:

(2)求这80位毕业生从事的工作与大学所学专业对口的概率,并估计该校近3年毕业的2000名大学生总从事的工作与大学所学专业对口的人数;

(3)若从工作与所学专业不对口的15人中选出男生甲、乙,女生对丙、丁,让他们两两进行一次10分钟的职业交流,该校宣传部对每次交流都一一进行视频记录,然后随机选取一次交流视频上传到学校的网站,试求选取的视频恰为异性交流视频的概率.

查看答案和解析>>

同步练习册答案