精英家教网 > 高中数学 > 题目详情
20.一个均匀的正四面体的四个面分别写有1,2,3,4四个数字,现随机投掷两次,正四面体底面上的数字分别为x1,x2,记t=${({x_1}-3)^2}+{({x_2}-3)^2}$.
(1)分别求出t取得最大值和最小值时的概率;
(2)求t≥4的概率.

分析 (1)当x1=x2=1时,t取得最大值;当x1=x2=3时,t取得最小值0.由此能求出结果.
(2)当t≥4时,t的取值为5,8.分别利用列举法求出当t=5时和当t=8时的概率,由此能求出t≥4的概率.

解答 解:(1)当x1=x2=1时,
t=(x1-3)2+(x2-3)2可取得最大值8,此时P=$\frac{1}{16}$;
当x1=x2=3时,t=${({x_1}-3)^2}+{({x_2}-3)^2}$可取得最小值0,此时P=$\frac{1}{16}$.
(2)当t≥4时,t的取值为5,8.
①当t=5时,(x1,x2)可能是:(2,1)、(1,4)、(1,2)、(4,1),
此时P=$\frac{1}{4}$;
②当t=8时,由(1)可知:P=$\frac{1}{16}$.
∴t≥4的概率为:$\frac{1}{4}+\frac{1}{16}$=$\frac{5}{16}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法和分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设集合M={x|-3<x<2},N={x∈Z|-1≤x≤3},则M∩N等于(  )
A.{0,1}B.{-1,0,1,2}C.{0,1,2}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin(2x-$\frac{π}{6}$)+a,a为常数
(1)求函数f(x)的最小正周期;
(2)若x∈[0,$\frac{π}{2}$]时,f(x)的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某时段内共有100辆汽车经过某一雷达地区,汽车时速的频率分布直方图如图所示,则时速不低于60km/h的汽车数量为(  )
A.38B.28C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过正三棱柱底面一边所作的正三棱柱的截面是(  )
A.三角形B.三角形或梯形
C.不是梯形的四边形D.梯形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,平面ABEF⊥平面CBED,四边形ABEF为直角梯形,∠AFE=∠FEB=90°,四边形CBED为等腰梯形,CD∥BE,且BE=2AF=2CD=2BC=2EF=4.
(Ⅰ)若梯形CBED内有一点G,使得FG∥平面ABC,求点G的轨迹;
(Ⅱ)求平面ABC与平面ACDF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$\overrightarrow a,\overrightarrow b$均为单位向量,它们的夹角为60°,那么|$\overrightarrow{a}$-2$\overrightarrow{b}$|等于(  )
A.2B.$4-\sqrt{3}$C.$\sqrt{13}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=|x-3|+|x+1|,g(x)=|x+1|-|x+a|-a.
(1)解不等式f(x)≥6;
(2)若不等式f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D(m<n),同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n]则称函数f(x)是区间[m,n]上的“保值函数”.
(1)求证:函数g(x)=x2-2x不是定义域[0,1]上的“保值函数”;
(2)已知f(x)=2+$\frac{1}{a}$-$\frac{1}{{a}^{2}x}$(a∈R,a≠0)是区间[m,n]上的“保值函数”,求a的取值范围.

查看答案和解析>>

同步练习册答案