【题目】已知四边形 的四个顶点在椭圆: 上,对角线所在直线的斜率为,且, .
(1)当点为椭圆的上顶点时,求所在直线方程;
(2)求四边形面积的最大值.
【答案】(1) ;(2).
【解析】试题分析:(1)由题意,对角线垂直平分线段,所以直线所在直线的斜率为,得中点的坐标为,所以所在直线方程为 ;(2)设, 所在直线方程分别为, ,则,又得,所以当时,四边形的面积最大,最大面积为.
试题解析:
(1)因为, ,所以对角线垂直平分线段.
因为直线 的斜率为,则直线所在直线的斜率为 .
又因为 ,则直线所在直线方程为.
由,解得
则中点的坐标为
所以所在直线方程为 ;
(2)设, 所在直线方程分别为, , , , 中点 .
由得
令 ,得
,
则
同理
则
又因为,所以中点 .
由点在直线上,得,
所以
因为,所以
所以当时,四边形的面积最大,最大面积为.
科目:高中数学 来源: 题型:
【题目】如图,正四棱锥S-ABCD中,SA=AB=2,E,F,G分别为BC,SC,CD的中点.设P为线段FG上任意一点.
(1)求证:EP⊥AC;
(2)当P为线段FG的中点时,求直线BP与平面EFG所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,则下列结论正确的是( )
A. 导函数为
B. 函数f(x)的图象关于直线对称
C. 函数f(x)在区间上是增函数
D. 函数f(x)的图象可由函数y=3cos 2x的图象向右平移个单位长度得到
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】金砖国家领导人第九次会晤于2017年9月3日至5日在中国福建厦门市举行,为了在金砖峰会期间为来到厦门的外国嘉宾提供服务,培训部对两千余名志愿者进行了集中培训,为了检验培训效果,现培训部从两千余名志愿者中随机抽取100名,按年龄(单位:岁)分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者前去机场参加接待外宾礼仪测试,则应从第3,4,5组中各抽取多少名志愿者?
(2)在(1)的条件下,若在第3,4组的志愿者中随机抽取2名志愿者介绍接待外宾经验感受,求第4组至少有1名志愿者被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆的左、右焦点,点在椭圆上,且离心率为
(1)求椭圆的方程;
(2)若的角平分线所在的直线与椭圆的另一个交点为为椭圆上的一点,当面积最大时,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线: 与圆相交的弦长等于椭圆: ()的焦距长.
(1)求椭圆的方程;
(2)已知为原点,椭圆与抛物线()交于、两点,点为椭圆上一动点,若直线、与轴分别交于、两点,求证: 为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com