精英家教网 > 高中数学 > 题目详情
过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k∈N*,k>1)的切线,切点为M1,设M1在x轴上的投影是点P1.又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2….依此下去,得到一系列点M1,M2,…,Mn,…,设它们的横坐标a1,a2,…,an,…,构成数列{an}.(a1≠0).
(1)求证数列{an}是等比数列,并求其通项公式;
(2)求证:an≥1+
n
k+1

(3)若k=2,记bn=
n
i=0
(-1)i
a
2
n-i
C
i
2n-i+1
,求b2010
分析:(1)要证数列{an}是等比数列,只需利用已知条件证明
an
an-1
=
k
k-1
是常数即可,利用通项公式的求法直接求其通项公式;
(2)要证an≥1+
n
k+1
,先验证n=1然后利用二项式定理,采用放缩法证明即可.
(3)若k=2,记bn=
n
i=0
(-1)i
a
2
n-i
C
i
2n-i+1
,求出bn=2bn-1-bn-2,解得bn=n+1,然后求b2010
解答:解:(1)对y=xk求导数,得y/=kxk-1,切点是Mn(an,ank)的切线方程是y-ank=kank-1(x-an).
当n=1时,切线过点P(1,0),即0-a1k=ka1k-1(x-a1),得a1=
k
k-1

当n>1时,切线过点Pn-1(an-1,0),即0-ank=kank-1(an-1-an),得
an
an-1
=
k
k-1

所以数列{an}是首项a1=
k
k-1
,公比为
k
k-1
的等比数列,且通项公式为an=(
k
k-1
)n

(2)当n=1时,a1=
k
k-1
=1+
1
k-1
,当n≥2时,应用二项式定理,an=(
k
k-1
)n=(1+
1
k-1
)n=
C
0
n
+
C
1
n
1
k-1
+
C
2
n
(
1
k-1
)2++
C
n
n
(
1
k-1
)n≥1+
n
k-1

(3)an=2n,bn=
n
i=0
(-1)i22n-2i
C
i
2n-i+1
,设cn=
n
i=0
(-1)i22n-2i
C
i
2n-1

则bn=22n+
n
i=1
(-1)i22n-2i(
C
1
2n-1
+
C
i-1
2n-1
)=
n
i=0
(-1)i22n-2i
C
i
2n-1
-
n-1
j=0
(-1)j22(n-1)-2j
C
j
2(n-1)-j+1
=cn-bn-1
同理cn=22n+
n-1
i=1
(-1)i22n-2i(
C
i
2n-i-1
+
C
i-1
2n-i-1
)+(-1)n
=
n-1
i=0
(-1)i22n-2i
C
i
2n-i-1
+
n
i=1
(-1)i22n-2i
C
i
2n-i-1
+
n
i=1
(-1)i22n-2i
C
i-1
2n-i-1
=4
n-1
i=0
(-1)i22(n-1)-2i
C
i
2(n-1)-i+1
-
n-1
k=0
(-1)k22(n-1)-2k
C
k
2(n-1)-k

=4bn-1-Cn-1
∴bn+bn-1=cn=4bn-1-cn-1=4bn-1-bn-1-bn-2,即bn=2bn-1-bn-2,∴bn-bn-1=bn-1-bn-2═b1-b0=2-1=1,
故bn=n+1,∴b2010=2011.
点评:本题是中档题,考查数列的通项公式的求法,数列的证明,数列的化简与构造法的应用,是本题解题的关键,注意二项式定理的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k∈N*,k>1)的切线,切点为Q1,设Q1点在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2;…;依此下去,得到一系列点Q1,Q2,…,Qn,…,设点Qn的横坐标为an
(Ⅰ)试求数列{an}的通项公式an;(用k的代数式表示)
(Ⅱ)求证:an≥1+
n
k-1

(Ⅲ)求证:
n
i=1
i
ai
k2-k
(注:
n
i=1
ai=a1+a2+…+an
).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•锦州一模)过点P(1,0)作曲线C:y=x2(x>0)的切线,切点为Q1,没Q1在x轴上的投影是P1,又过P1,作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2…,依次下去,得到一系列点Q1Q2,…Qn,设Qn的横坐标为an
(I)求a1的值及{an}的通项公式;
(Ⅱ)令bn=
an(an-1)(an+1-1)
,设数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,0)作曲线C:y=x2(x∈(0,+∞)的切线,切点为M1,设M1在x轴上的投影是点P1.又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2,….依此下去,得到一系列点M1,M2…,Mn,…,设它们的横坐标a1,a2,…,an,…,构成数列为{an}.
(1)求证数列{an}是等比数列,并求其通项公式;
(2)令bn=
nan
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)如图,过点P(1,0)作曲线C:y=x2(x∈(0,+∞))的切线,切点为Q1,设点Q1在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为Q2,设Q2在x轴上的投影是P2;…;依此下去,得到一系列点Q1,Q2,Q3-Qn,设点Qn的横坐标为an
(1)求直线PQ1的方程;
(2)求数列{an}的通项公式;
(3)记Qn到直线PnQn+1的距离为dn,求证:n≥2时,
1
d1
+
1
d2
+…
1
dn
>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,0)作曲线C:y=x2(x>0)的切线,切点为M1,设点M1在x轴上的投影是点P1,又过点P1作曲线C的切线,切点为M2,设点M2在x轴上的投影是点P2,…依此下去,得到点列P1,P2,P3,…,记它们的横坐标a1,a2,a3,…构成数列{an}.
(Ⅰ)求an与an-1(n≥2)的关系式;
(Ⅱ)令bn=
nan
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案