精英家教网 > 高中数学 > 题目详情

【题目】已知数列中,,且对时,有

(Ⅰ)设数列满足,证明数列为等比数列,并求数列的通项公式;

(Ⅱ)记,求数列的前项和

【答案】(Ⅰ)证明见解析;;(Ⅱ)

【解析】

(Ⅰ)利用已知等式表示出,整理可知,从而可证得数列为等比数列,根据等比数列通项公式求得;利用配凑的方式可证得数列为等差数列,利用等差数列通项公式,整理可得;(Ⅱ)将代入,整理可得:,利用累乘的方式可求得,进而可得;采用分组求和的方式,分别对用错位相减的方法求和,对采用裂项相消的方法求和,分别求和后加和即可得到结果.

(Ⅰ)由题意知:

数列是以为首项,为公比的等比数列

,即

数列是以为首项,为公差的等差数列

(Ⅱ)由(Ⅰ)知:,即:

则:,……,

左右两侧分别相乘可得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,沿河有AB两城镇,它们相距千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为(万元),表示污水流量;铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇A和城镇B的污水流量分别为两城镇连接污水处理厂的管道总长为千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到):

1)若在城镇A和城镇B单独建厂,共需多少总费用?

2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为千米,求联合建厂的总费用的函数关系式,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

1)讨论函数的单调性;

2)用表示中较大者,记函数.若函数上恰有2个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥D-ABC中,EF分别为DBAB的中点,且.

1)求证:平面平面ABC

2)求点D到平面CEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数设为.

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数有两个极值点,试用表示

(Ⅲ)在(Ⅱ)的条件下,若的极值点恰为的零点,试求这两个函数的所有极值之和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆心在曲线上,与直线x+y+1=0相切,且面积最小的圆的方程为(  )

A. x2+y-12=2B. x2+y+12=2C. x-12+y2=2D. x+12+y2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

交付金额(元)

支付方式

0,1000]

1000,2000]

大于2000

仅使用A

18

9

3

仅使用B

10

14

1

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月AB两种支付方式都使用的概率;

(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图),且倾斜时底面的一条棱始终在桌面上(图均为容器的纵截面).

1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?

2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.

查看答案和解析>>

同步练习册答案