精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆点是它的右端点,弦过椭圆的中心.

1)求椭圆的标准方程;

2)设为圆上不重合的两点,的平分线总是垂直于轴,且存在实数,使得,求的最大值.

【答案】1;(2.

【解析】

1)先求出的值,再求出点的坐标,并将点的坐标代入椭圆方程,得出的值,即可得出椭圆的标准方程;

2)先由已知条件得出直线和直线的斜率互为相反数,可设直线的方程为,将直线的方程与椭圆方程联立,求出点的坐标,同理得出点的坐标,利用向量的坐标运算得出实数的表达式,再利用基本不等式可求出的最大值.

1)依题意可知.

是等腰直角三角形,.又点在椭圆上,,因此,所求椭圆的标准方程为

2)如下图所示:

对于椭圆上两点的平分线总是垂直于轴,

所在直线关于直线对称.

,则

则直线的方程为,①

直线的方程为,②

将①代入,得.

在椭圆上,是方程③的一个根,

替换,得到.

易知,则

当且仅当时,即当时,等号成立,

因此,实数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面多边形中,四边形是边长为2的正方形,四边形为等腰梯形,的中点, ,现将梯形沿折叠,使平面平面.

1)求证:

2)求与平面成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①;②;③ 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.

中,内角ABC的对边分别为abc且满足________________,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,.

1)求证:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,中华人民共和国成立70周年,为了庆祝建国70周年,某中学在全校进行了一次爱国主义知识竞赛,共1000名学生参加,答对题数(共60题)分布如下表所示:

组别

频数

10

185

265

400

115

25

答对题数近似服从正态分布为这1000人答对题数的平均值(同一组数据用该组区间的中点值作为代表).

1)估计答对题数在内的人数(精确到整数位).

2)学校为此次参加竞赛的学生制定如下奖励方案:每名同学可以获得2次抽奖机会,每次抽奖所得奖品的价值与对应的概率如下表所示.

获得奖品的价值(单位:元)

0

10

20

概率

(单位:元)表示学生甲参与抽奖所得奖品的价值,求的分布列及数学期望.

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中.

1)当时,若函数上单调递减,求的取值范围;

2)当时,

①求函数的极值;

②设函数图象上任意一点处的切线为,求轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若内单调递减,求实数的取值范围;

(Ⅱ)若函数有两个极值点分别为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某便利店计划每天购进某品牌鲜奶若干件,便利店每销售一瓶鲜奶可获利元;若供大于求,剩余鲜奶全部退回,但每瓶鲜奶亏损元;若供不应求,则便利店可从外调剂,此时每瓶调剂品可获利.

(1)若便利店一天购进鲜奶瓶,求当天的利润单位:元关于当天鲜奶需求量单位:瓶,的函数解析式;

(2)便利店记录了天该鲜奶的日需求量单位:瓶,整理得下表:

日需求量

频数

若便利店一天购进瓶该鲜奶,以天记录的各需求量的频率作为各需求量发生的概率,求当天利润在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆)与圆在第一象限相交于点,椭圆的左、右焦点都在圆上,且线段为圆的直径.

1)求椭圆的方程;

2)设过点的动直线与椭圆交于两点,为坐标原点,证明:为定值,并求出这个定值.

查看答案和解析>>

同步练习册答案