精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的两个焦点分别为 ,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是( )

A. B. C. D.

【答案】C

【解析】试题分析:解:设点Px轴上方,坐标为()为等腰直角三角形,|PF2|=|F1F2|,故选D.

考点:椭圆的简单性质

点评:本题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中abce的关系

型】单选题
束】
8

【题目】”是“对任意的正数 ”的( )

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

【答案】A

【解析】分析:根据基本不等式,我们可以判断出”?“对任意的正数x2x+≥1”对任意的正数x2x+≥1”?“a=

真假,进而根据充要条件的定义,即可得到结论.

解答:解:当“a=时,由基本不等式可得:

对任意的正数x2x+≥1”一定成立,

“a=”?“对任意的正数x2x+≥1”为真命题;

对任意的正数x2x+≥1时,可得“a≥

对任意的正数x2x+≥1”?“a=为假命题;

“a=对任意的正数x2x+≥1充分不必要条件

故选A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 (为实常数)

I)当时,求函数上的最大值及相应的值;

II)当时,讨论方程根的个数.

III)若,且对任意的,都有,求

实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,平面的中点,的中点,点在线段上,且

(1)证明:平面

(2)若二面角的大小为60°,求BDC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个棱锥的三视图如图,则该棱锥的全面积为(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上。”这就是著名的欧拉线定理,在中,分别是外心、垂心和重心,边的中点,下列四个结论:(1);(2);(3);(4)正确的个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数的最小值为.

(1)当时,求的值;

(2)求

(3)已知函数为定义在上的增函数,且对任意的都满足,问:是否存在这样的实数,使不等式对所有恒成立,若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列满足

1的通项公式;

2求和:

【答案】1;(2

【解析】试题分析:(1)根据等差数列 列出关于首项公差的方程组,解方程组可得的值,从而可得数列的通项公式;(2)利用已知条件根据题意列出关于首项公比 的方程组,解得的值求出数列的通项公式,然后利用等比数列求和公式求解即可.

试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

从而.

型】解答
束】
18

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处有极值,求的值;

(2)若对于任意的上单调递增,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列满足

1的通项公式;

2求和:

【答案】1;(2

【解析】试题分析:(1)根据等差数列 列出关于首项公差的方程组,解方程组可得的值,从而可得数列的通项公式;(2)利用已知条件根据题意列出关于首项公比 的方程组,解得的值求出数列的通项公式,然后利用等比数列求和公式求解即可.

试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

从而.

型】解答
束】
18

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

同步练习册答案