精英家教网 > 高中数学 > 题目详情
已知直线y=-x+m与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
相交于A、B两点,若椭圆的离心率为
3
3
,焦距为2.
(Ⅰ)求椭圆方程;
(Ⅱ)若向量
OA
OB
=0(其中0为坐标原点),求m的值.
分析:(Ⅰ)利用椭圆的离心率为
3
3
,焦距为2,结合b=
a2-c2
,求出几何量,即可求椭圆方程;
(Ⅱ)直线方程代入椭圆方程,利用韦达定理及向量知识,即可求得m的值.
解答:解:(Ⅰ)∵椭圆的离心率为
3
3
,焦距为2,
c
a
=
3
3
,2c=2
∴c=1,a=
3

b=
a2-c2
=
2

∴椭圆方程为
x2
3
+
y2
2
=1

(Ⅱ)设A(x1,y1),B(x2,y2),则
将直线y=-x+m,代入椭圆方程,整理可得5x2-6mx+3m2-6=0
∴x1+x2=
6m
5
,x1x2=
3m2-6
5

∴y1y2=
2m2-6
5

OA
OB
=0(其中0为坐标原点),
∴x1x2+y1y2=0
3m2-6
5
+
2m2-6
5
=0
∴m=±
2
15
5
,此时△=36m2-20(3m2-6)=
312
5
>0.
点评:本题考查椭圆的坐标方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线y=x+m与椭圆4x2+y2=16有两个不同的交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=x+m与圆x2+y2=4相切,则实数m等于
±2
2
±2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知双曲线
x2
a2
-
y2
b2
=1
的渐近线方程为y=±
3
3
x
,左焦点为F,过A(a,0),B(0,-b)的直线为l,原点到直线l的距离是
3
2

(1)求双曲线的方程;
(2)已知直线y=x+m交双曲线于不同的两点C,D,问是否存在实数m,使得以CD为直径的圆经过双曲线的左焦点F.若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年上海市八校高三(下)第二次联考数学试卷(理科)(解析版) 题型:解答题

已知双曲线的渐近线方程为,左焦点为F,过A(a,0),B(0,-b)的直线为l,原点到直线l的距离是
(1)求双曲线的方程;
(2)已知直线y=x+m交双曲线于不同的两点C,D,问是否存在实数m,使得以CD为直径的圆经过双曲线的左焦点F.若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案