精英家教网 > 高中数学 > 题目详情

【题目】某电视台举行一个比赛类型的娱乐节目, 两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将队第六位选手的成绩没有给出,并且告知大家队的平均分比队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.

(1)根据茎叶图中的数据,求出队第六位选手的成绩;

(2)主持人从队所有选手成绩中随机抽2个,求至少有一个为“晋级”的概率;

(3)主持人从两队所有选手成绩分别随机抽取2个,记抽取到“晋级”选手的总人数为,求的分布列及数学期望.

【答案】(12023的分布列见解析,数学期望为2

【解析】试题分析:(1)先求队选手的平均分22,再根据队选手的平均分为18 队第6位选手的成绩(2)从队所有选手成绩中随机抽取2个,共有种方法,其中都不晋级种方法,所以由对立事件概率得3)先确定随机变量取法:01234,再分别求对应事件概率,列表得分布列,根据公式求数学期望

试题解析:(1队选手的平均分为

队第6位选手的成绩为

,得

2队中成绩不少于21分的有2个,从中抽取2个至少有一个为晋级的对立事件为两人都没有晋级,则概率

3的可能取值有01234

的分布列为


0

1

2

3

4







练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=3 ,Q=t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).求:
(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;
(2)怎样将资金分配给甲、乙两种商品,能使得总利润y达到最大值,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下说法:①不共面的四点中,任意三点不共线;

②有三个不同公共点的两个平面重合;

③没有公共点的两条直线是异面直线;

④分别和两条异面直线都相交的两条直线异面;

一条直线和两条异面直线都相交,则它们可以确定两个平面.

其中正确结论的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆,点在圆上,点在圆上.

(1)求的最小值;

(2)直线上是否存在点,满足经过点由无数对相互垂直的直线,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有小学21所中学14所大学7所现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查

求应从小学、中学、大学中分别抽取的学校数目

若从抽取的6所学校中随机抽取2所学校做进一步数据分析

(1)列出所有可能的抽取结果

(2)求抽取的2所学校均为小学的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数 是奇函数.
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)设关于x的函数F(x)=f(4x﹣b)+f(﹣2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|﹣x,
(1)用分段函数的形式表示该函数,并画出该函数的图象;
(2)写出该函数的值域、单调区间(不要求证明);
(3)若对任意x∈R,不等式|2x﹣1|≥a+x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为,圆与直线交于 两点, 点的直角坐标为

)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;

)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC-A1B1Cl中,M,N分别为CC1,A1B1的中点.

(I)证明:直线MN//平面CAB1

(II)BA=BC=BB1,CA=CB1,CA⊥CB1,∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案