精英家教网 > 高中数学 > 题目详情
设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集一定是(  )
分析:先将方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集转化为满足a1x2+b1x+c1=0或a2x2+b2x+c2=0,也即集合M={x|a1x2+b1x+c1=0},集合N={a2x2+b2x+c2=0}的并集,从而得出方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集的表示法.
解答:解:方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集转化为:
满足a1x2+b1x+c1=0或a2x2+b2x+c2=0,
也即集合M={x|a1x2+b1x+c1=0},集合N={a2x2+b2x+c2=0}的并集,
从而得出方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集可用M、N表示为M∪N.
故选B.
点评:本小题主要考查交、并、补集的混合运算、方程式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合Sn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定义A与B的差为A-B=(|a1-b1|,|a2-b2|,…|an-bn|);
A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)证明:?A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅱ)证明:?A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数
(Ⅲ)设P⊆Sn,P中有m(m≥2)个元素,记P中所有两元素间距离的平均值为
.
d
(P)

证明:
.
d
(P)
mn
2(m-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,其前n项的和为Sn
(1)求证:数列{
Sn
n
}
为等差数列;
(2)设{an}各项为正数,a1=
1
15
,a1≠a2,若存在互异正整数m,n,p满足:①m+p=2n;②
Sm
+
Sp
=2
Sn
.求集合{(x,y)|Sx•Sy=1,x∈N*,y∈N*}的元素个数;
(3)设bn=aan(a为常数,a>0,a≠1,a1≠a2),数列{bn}前n项和为Tn.对于正整数c,d,e,f,若c<d<e<f,且c+f=d+e,试比较(Tc-1+(Tf-1与(Td-1+(Te-1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在集合D上的函数,若对集合D中的任意两数x1,x2恒有f(
1
4
x1+
3
4
x2)<
1
4
f(x1)+
3
4
f(x2)
成立,则f(x)是定义在D上的β函数.
(1)试判断f(x)=x2是否是其定义域上的β函数?
(2)设f(x)是定义在R上的奇函数,求证:f(x)不是定义在R上的β函数.
(3)设f(x)是定义在集合D上的函数,若对任意实数α∈[0,1]以及集合D中的任意两数x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)是定义在D上的α-β函数.已知f(x)是定义在R上的α-β函数,m是给定的正整数,设an=f(n),n=1,2,3…m且a0=0,am=2m,记∫=a1+a2+a3+…+am,对任意满足条件的函数f(x),求∫的最大值.

查看答案和解析>>

科目:高中数学 来源:高考零距离 二轮冲刺优化讲练 数学 题型:044

设{an}是等差数列,d为公差,并且d≠0,它的前n项和为Sn.设集合M={(an,)|n∈N*},N={(x,y)|x2-y2=1,x、y∈R}.下列结论是否正确?如果正确,请给予证明;如果不正确,请举一个反例说明.

(1)

以集合M中的元素为坐标的点都在同一条直线上

(2)

M∩N中至多有一个元素

(3)

当a1≠0时,一定有M∩N≠Φ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在集合D上的函数,若对集合D中的任意两数x1,x2恒有数学公式成立,则f(x)是定义在D上的β函数.
(1)试判断f(x)=x2是否是其定义域上的β函数?
(2)设f(x)是定义在R上的奇函数,求证:f(x)不是定义在R上的β函数.
(3)设f(x)是定义在集合D上的函数,若对任意实数α∈[0,1]以及集合D中的任意两数x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)是定义在D上的α-β函数.已知f(x)是定义在R上的α-β函数,m是给定的正整数,设an=f(n),n=1,2,3…m且a0=0,am=2m,记∫=a1+a2+a3+…+am,对任意满足条件的函数f(x),求∫的最大值.

查看答案和解析>>

同步练习册答案