精英家教网 > 高中数学 > 题目详情
6.已知正实数a、b、c满足$\frac{1}{e}≤\frac{c}{a}$≤2,clnb=a+clnc,其中e是自然对数的底数,则ln$\frac{b}{a}$的取值范围是(  )
A.[1,+∞)B.$[{1,\frac{1}{2}+ln2}]$C.(-∞,e-1]D.[1,e-1]

分析 由clnb=a+clnc化为lnb=$\frac{a}{c}$+lnc,可得ln$\frac{b}{a}$=lnlnb-lna=$\frac{a}{c}$+lnc-lna=$\frac{a}{c}$+ln $\frac{c}{a}$,令 $\frac{c}{a}$=x,可得ln $\frac{b}{a}$=f(x)=$\frac{1}{x}$+lnx,$\frac{1}{e}$≤x≤2.再利用导数研究其单调性极值与最值即可.

解答 解:由clnb=a+clnc化为lnb=$\frac{a}{c}$+lnc,
∴ln$\frac{b}{a}$=lnb-lna=$\frac{a}{c}$+lnc-lna=$\frac{a}{c}$+ln$\frac{c}{a}$,
令$\frac{c}{a}$=x,则ln$\frac{b}{a}$=f(x)=$\frac{1}{x}$+lnx,$\frac{1}{e}$≤x≤2.
f′(x)=-$\frac{1}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-1}{{x}^{2}}$,令f′(x)=0,解得x=1.
当$\frac{1}{e}$≤x<1时,f′(x)<0,函数f(x)单调递减;
当1<x≤2时,f′(x)>0,函数f(x)单调递增.
∴当x=1时,函数f(x)取得极小值即最小值,f(1)=1+ln1=1.
又f(2)=$\frac{1}{2}$+ln2,f($\frac{1}{e}$)=e+ln$\frac{1}{e}$=e-1,
f($\frac{1}{e}$)-f(2)=e-ln2-$\frac{3}{2}$>e-lne-$\frac{3}{2}$=e-2.5>0,
∴e-1>$\frac{1}{2}$+ln2,
因此f(x)的最大值为e-1.
综上可得:f(x)∈[1,e-1].
即ln$\frac{b}{a}$的取值范围是[1,e-1].
故选:D.

点评 本题考查了经过变形把问题转化为利用导数研究其单调性极值与最值,考查了推理能力和解决问题的能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.直线l是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右准线,以原点O为圆心且过双曲线焦点的圆被直线l分成弧长为2:1的两段,则双曲线的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图AB是圆O的直径,AF⊥AB,弦CD交AB、AF分别于E、F,交圆于点C.
(1)证明:AF•DA=AC•DF
(2)若圆的半径为2,OE=EB=$\frac{1}{2}$AF,ED=$\frac{3}{2}$,求CF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,设△ABC和△CDE都是等边三角形,且∠EBD=62°,则∠AEB的度数为122°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,以△ABC的边BC为直径作圆O交AC于D,过A点作AE⊥BC于E,AE交圆O于点G,交BD于点F.
(Ⅰ)证明:△FBE∽△CAE;
(Ⅱ)证明:GE2=EF•EA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a,b,c为正实数,求证:
(Ⅰ) $\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+abc≥2\sqrt{3}$;
(Ⅱ) ${a^2}+{b^2}+{c^2}+{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2}≥6\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知球面上有A、B、C三点,BC=2$\sqrt{3}$,AB=AC=2,若球的表面积为20π,则球心到平面ABC的距离为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设四边形ABCD内接于圆,另一圆的圆心在边AB上并且与四边形的其余三边相切.证明:AD+BC=AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)内).根据频率分布直方图算出样本数据的中位数是(  )
A.2360B.2380C.2400D.2420

查看答案和解析>>

同步练习册答案