精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2+bx(a0)的导函数f(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(nN*)均在函数y=f(x)的图象上,求数列{an}的通项公式及Sn的最大值.

【答案】,当时,取得最大值

【解析】

试题分析:可以根据函数的导函数为求出,于是得到函数,将点代入得:.考查已知,分类讨论,当时,,当时,,得出后检验对是否适用.经验证适用,于是得到数列的通项公式,若想求的最大值,则可令,求出的取值范围,然后即可以求出的最大值.

试题解析:由题意可知:对应相等可得

可得.因为点均在函数的图象上,所以有.

时,

时,适合上式,

,当时,取得最大值.

综上,,当时,取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积为

1求椭圆的方程;

2设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5

)求数列{bn}的通项公式;

)数列{bn}的前n项和为Sn,求证:数列{Sn+}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

函数的图象与的图象无公共点,求实数的取值范围;

是否存在实数,使得对任意的,都有函数的图象在的图象的下方?若存在,请求出整数的最大值;若不存在,请说理由.

(参考数据:,).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数yf(x)对于任意的x都满足f(x+1)=-f(x)当-1x<1f(x)=x3若函数g(x)=f(x)-loga|x|至少有6个零点a的取值范围是(  )

A. (5) B.

C. (57) D. [57)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求函数的极值;

2,比较与1的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为方便市民休闲观光,市政府计划在半径为200米,圆心角为的扇形广场内(如图所示),沿边界修建观光道路,其中分别在线段上,且两点间距离为定长.

1)当时,求观光道段的长度;

2)为提高观光效果,应尽量增加观光道路总长度,试确定图中两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次篮球定点投篮训练中,规定每人最多投3次,在处每投进一球得3分;在处每投进一球得2分,如果前两次得分之和超过3分就停止投篮;否则投第3次,某同学在处的抽中率,在处的抽中率为,该同学选择现在处投第一球,以后都在处投,且每次投篮都互不影响,用表示该同学投篮训练结束后所得的总分,其分布列为:

0

2

3

4

5

0.03

1的值;

2求随机变量的数学期望

3试比较该同学选择上述方式投篮得分超过3分与选择都在处投篮得分超过3分的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形为正方形,点分别为线段上的点,

1求证:平面平面

2求证:当点不与点重合时,平面

3时,求点到直线距离的最小值

查看答案和解析>>

同步练习册答案