精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为为常数)对于任意的恒成立.

1)若,求的值;

2)证明:数列是等差数列;

3)若,关于的不等式有且仅有两个不同的整数解,求的取值范围.

【答案】11;(2)详见解析;(3

【解析】

1)将代入已知等式即可求得结果;

2)利用可得到递推关系,将换成后两式作差可得到,从而证得结论;

3)将不等式化为,令,则不等式的正整数解只有两个,通过分析可知除以外只能有符合要求;当时,通过导数可求得,分别讨论的取值,得到符合题意的范围后,解不等式求得结果.

1)当时,,解得:

2)由(1)知:

,则

,又

对任意成立,数列是等差数列;

3)由(2)可知:,即

,题目条件转化为满足不等式的正整数解只有两个,

符合,则,即;若符合,则

符合,则为任意实数,即除以外只能有符合要求.

时,,解得:

,则

,则

时,恒成立,上单调递增,

时,至少存在满足不等式,不符合要求;

时,对于任意都不满足不等式,也不满足,

此时只有满足;

时,只有符合;

,即,解得:

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的焦点为,过的直线两点,过作与轴垂直的直线,又知点,直线记为交于点.设,已知当时,

(Ⅰ)求椭圆的方程;

(Ⅱ)求证:无论如何变化,点的横坐标是定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中, 分别为的中点,点为线段上的一点,将沿折起到的位置,使,如图2.

(1)求证:

(2)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体中,已知.

1)当四面体体积最大时,求的值;

2)当时,设四面体的外接球球心为,求和平面所成夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1x22pyp0),圆C2x2+y28y+120的圆心M到抛物线C1的准线的距离为,点P是抛物线C1上一点,过点PM的直线交抛物线C1于另一点Q,且|PM|2|MQ|,过点P作圆C2的两条切线,切点为AB

)求抛物线C1的方程;

)求直线PQ的方程及的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥ABCD中,点EBD上,EAEBECEDBDCD,△ACD为正三角形,点MN分别在AECD上运动(不含端点),且AMCN,则当四面体CEMN的体积取得最大值时,三棱锥ABCD的外接球的表面积为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了更好地支持中小型企业的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:

样本数据落在区间的频率为0.45

如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;

样本的中位数为480万元.

其中正确结论的个数为( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:①“”是“”的充分不必要条件;②命题“”的否定是“”;③小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件为“4个人去的景点不相同”,事件为“小赵独自去一个景点”,则;④设,其正态分布密度曲线如图所示,那么向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值是6587.(注:若,则)其中正确说法的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左右焦点,椭圆与轴正半轴交于点,直线的斜率为,且到直线的距离为

1)求椭圆的方程;

2为椭圆上任意一点,过分别作直线,且相交于轴上方一点,当时,求两点间距离的最大值.

查看答案和解析>>

同步练习册答案