【题目】已知函数f(x)= ,若存在实数x1 , x2 , x3 , x4 满足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 则 的取值范围是( )
A.(20,32)
B.(9,21)
C.(8,24)
D.(15,25)
【答案】B
【解析】解:函数的图象如图所示,
∵f(x1)=f(x2),
∴﹣log2x1=log2x2 ,
∴log2x1x2=0,
∴x1x2=1,
∵f(x3)=f(x4),
∴x3+x4=12,2<x3<x4<10
∴ =x3x4﹣(x3+x4)+1=x3x4﹣11,
∵2<x3<x4<10
∴ 的取值范围是(9,21).
故选:B.
【考点精析】关于本题考查的函数的零点与方程根的关系,需要了解二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】命题p:任意两个等边三角形都是相似的.
①它的否定是_________________________________________________________;
②否命题是_____________________________________________________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,平面平面,四边形为菱形,且, , ∥, 为中点.
(Ⅰ)求证: ∥平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在棱上是否存在点,使 ? 若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点是椭圆上的点,离心率为.
(1)求椭圆的方程;
(2)点在椭圆上上,若点与点关于原点的对称,连接,并延长与椭圆的另一个交点为,连接,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非零向量 , , , 满足 =2 ﹣ , =k + ,给出以下结论:
①若 与 不共线, 与 共线,则k=﹣2;
②若 与 不共线, 与 共线,则k=2;
③存在实数k,使得 与 不共线, 与 共线;
④不存在实数k,使得 与 不共线, 与 共线.
其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x=1是函数f(x)=ax3-x2+(a+1)x+5的一个极值点.
(1)求函数f(x)的解析式;
(2)若曲线y=f(x)与直线y=2x+m有三个交点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0,且直线l与圆C交于A、B两点.
(1)若|AB|= ,求直线l的倾斜角;
(2)若点P(1,1),满足2 = ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}中,已知a1=2,a4=16
(1)求数列{an}的通项公式;
(2)若a3 , a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 (a>0,b>0)的右准线l2与一条渐近线l交于点P,F是双曲线的右焦点.
(1)求证:PF⊥l;
(2)若PF=3,且双曲线的离心率e=,求该双曲线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com