精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-
3
sin2x+sinxcosx

(I)求函数f(x)的最小正周期; 
(II)求函数f(x)在x∈[0,
π
2
]
的值域.
分析:把f(x)的解析式中的第一项利用二倍角的余弦函数公式化简,第二项利用二倍角的正弦函数公式化简,然后再利用两角和的正弦函数公式化为一个角的正弦函数,
(I)找出正弦函数中的λ,根据周期公式T=
λ
即可求出最小正周期;
(II)由x的范围,求出这个角的范围,然后根据正弦函数的图象与性质得到正弦函数的值域,即可得到f(x)的值域.
解答:解:f(x)=-
3
sin2x+sinxcosx

=-
3
×
1-cos2x
2
+
1
2
sin2x

=
1
2
sin2x+
3
2
cos2x-
3
2

=sin(2x+
π
3
)-
3
2

(I)T=
2

(II)∴0≤x≤
π
2

π
3
≤2x+
π
3
3

-
3
2
≤sin(2x+
π
3
)≤1

所以f(x)的值域为:[-
3
2-
3
2
]
点评:此题考查了正弦函数的图象与性质,三角函数的周期性及其求法,以及正弦函数的值域.根据三角函数的恒等变形把f(x)的解析式化为一个角的正弦函数是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案