如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1.
(1)证明:MN∥平面PCD;
(2)求二面角A-PB-D的大小.
解:(1)证明:取AD中点E,连接ME,NE,由已知M,N分别是PA,BC的中点, ∴ME∥PD,NE∥CD 又ME,NE平面MNE,ME∩NE=E, 所以,平面MNE∥平面PCD,所以,MN∥平面PCD.4分 (2)因为ME∥PD,所以ME⊥平面ABCD,ME⊥BD,又BD⊥MC,所以BD⊥平面MCE,所以CE⊥BD,又CE⊥PD,所以CE⊥平面PBD,由已知,所以平面PBD的法向量 M为等腰直角三角形PAD斜边中点,所以DM⊥PA, 又CD⊥平面PAD,AB∥CD,所以AB⊥平面PAD,AB⊥DM,所以DM⊥平面PAB,所以平面PAB的法向量(-,0,);设二面角A-PB-D的平面角为,
|
科目:高中数学 来源: 题型:
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com