精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(2x-4)exa(x+2)2(x>0,aR,e是自然对数的底数).

(1)f(x)(0,+∞)上的单调递增函数,求实数a的取值范围;

(2)a时,证明:函数f(x)有最小值,并求函数f(x)的最小值的取值范围.

【答案】(1) (2)(-2e,-2).

【解析】试题分析:(1)由题意得当x>0时,函数f′(x)≥0恒成立,再分离变量法转化为对应函数最值,根据导数求对应函数单调性,进而确定最值,得实数a的取值范围;(2)先研究导函数单调性,再根据零点存在定理得导函数有唯一一个零点,即为函数极小值点,也是最小值点,最后利用导数研究最小值函数单调性,即得最小值取值范围

试题解析:(1)f′(x)=2ex+(2x-4)ex+2a(x+2)=(2x-2)ex+2a(x+2),依题意,当x>0时,函数f′(x)≥0恒成立,即a≥-恒成立,记g(x)=-,则g′(x)=-

=-<0,所以g(x)(0,+∞)上单调递减,所以g(x)<g(0)=,所以a.

a的取值范围为.

(2)因为[f′(x)]′=2xex+2a>0,所以yf′(x)(0,+∞)上的增函数,又f′(0)=4a-2<0,f′(1)=6a>0,所以存在t(0,1)使得f′(t)=0,

又当x(0,t)时,f′(x)<0,当x(t,+∞)时,f′(x)>0,

所以当xt时,f(x)minf(t)=(2t-4)eta(t+2)2.且有f′(t)=0a=-

f(x)minf(t)=(2t-4)et-(t-1)(t+2)et=et(-t2t-2),t(0,1).

h(t)=et(-t2t-2),则h′(t)=et(-t2t-2)+et(-2t+1)=et(-t2t-1)<0,

所以h(1)<h(t)<h(0),

f(x)的最小值的取值范围是(-2e,-2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C过点M0-2)、N(3,1),且圆心C在直线x+2y+1=0上.

(1)求圆C的方程;

(2)设直线ax-y+1=0与圆C交于AB两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(-,0),B(,0),直线MAMB交于点M,它们的斜率之积为常数m(m≠0),且△MAB的面积最大值为,设动点M的轨迹为曲线E.

(1)求曲线E的方程;

(2)过曲线E外一点QE的两条切线l1l2,若它们的斜率之积为-1,那么·是否为定值?若是,请求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.

1)根据数据可知具有线性相关关系请建立关于的回归方程(系数精确到);

2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以(单位:件)表示日销量, 则每位员工每日奖励100元; 则每位员工每日奖励150元; 则每位员工每日奖励200元.现已知该网站6月份日销量服从正态分布请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位)

参考数据 其中 分别为第个月的促销费用和产品销量 .

参考公式

1)对于一组数据 其回归方程的斜率和截距的最小二乘估计分别为 .

2)若随机变量服从正态分布 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在抛物线上,圆过原点且与抛物线的准线相切.

(1)求该抛物线的方程;

(2)过抛物线焦点的直线交抛物线于 两点,分别在点 处作抛物线的两条切线交于点,求三角形面积的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在图所示的五面体中,面ABCD为直角梯形,,平面平面ABCD是边长为2的正三角形.

证明:平面ACF

若点P在线段EF上,且二面角的余弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 (k为常数,e=2.718 28…是自然对数的底数).

(1)当k≤0时,求函数f (x)的单调区间;

(2)若函数f (x)在(0,2)内存在两个极值点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C和点,若在圆C上存在点P,使得,则半径r的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一元二次方程x2-mx+m2+m-1=0有两实根x1x2

1)求m的取值范围;

2)求x1x2的最值;

3)如果,求m的取值范围.

查看答案和解析>>

同步练习册答案