精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别是,其离心率,点为椭圆上的一个动点,面积的最大值为3.

(1)求椭圆的标准方程;

(2)已知点,过点且斜率不为0的直线与椭圆相交于两点,直线轴分别相交于两点,试问是否为定值?如果,求出这个定值;如果不是,请说明理由.

【答案】(1);(2)答案见解析.

【解析】试题分析:

(1)由题意得到关于b,c的方程组,求解方程组结合椭圆的性质可得则椭圆的标准方程为

(2)设直线y轴截距式方程:结合直线方程可得联立直线方程与椭圆方程有结合韦达定理可得为定值.

试题解析:

(1)由题意知,当点是椭圆的上、下顶点时,的面积最大,

此时的面积

又椭圆的离心率

由①②得:

所以,椭圆的标准方程为

(2)设直线的方程为,则

直线的方程为,则,即

同理可得

所以

为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f (x)在R上可导,其导函数为f ′(x),且函数f (x)在x=-2处取得极大值,则函数y=f ′(x)的图象可能是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点的直线与抛物线交于两点,线段的垂直平分线交轴于点,若,则点的横坐标为( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为为参数).

1)判断直线与曲线的位置关系,并说明理由;

2)若直线和曲线相交于两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且时,总有成立.

a的值;

判断并证明函数的单调性;

上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为:为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设曲线与直线交于两点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)

一只药用昆虫的产卵数y(单位:个)与一定范围内的温度(单位:℃)有关,现收集了该种药用昆虫的6组观测数据如下表所示.

经计算得

,线性回归模型的残差平方和

,其中分别为观测数据中的温度和产卵数,

(1)若用线性回归模型,求的回归方程(结果精确到0.1).

(2)若用非线性回归模型预测当温度为35℃时,该种药用昆虫的产卵数(结果取整数).

附:一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某社区居民每天参加健身的时间,某机构在该社区随机采访男性、女性各50名,其中每人每天的健身时间不少于1小时称为“健身族”,否则称其为"非健身族”,调查结果如下:

健身族

非健身族

合计

男性

40

10

50

女性

30

20

50

合计

70

30

100

(1)若居民每人每天的平均健身时间不低于70分钟,则称该社区为“健身社区”. 已知被随机采访的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分时间分別是1.2小时,0.8小时,1.5小时,0.7小时,试估计该社区可否称为“健身社区”?

(2)根据以上数据,能否在犯错误的概率不超过5%的情况下认为“健身族”与“性别”有关?

参考公式: ,其中.

参考数据:

0. 50

0. 40

0. 25

0. 05

0. 025

0. 010

0. 455

0. 708

1. 321

3. 840

5. 024

6. 635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案