【题目】已知函数,.
(1)当吋,解不等式;
(2)设.
①当时,若存在,使得,证明:;
②当时,讨论的零点个数.
【答案】(1)(2)①见解析②见解析
【解析】
(1)将代入,不妨设,利用导数判断函数单调递增,由,即可求解.
(2)①由,代入解析式整理可得,由,利用基本不等式可得,方法一:设,利用导数即可证出;方法二:利用反证法,假设,找出,与已知矛盾即可. ②,求导函数,求出函数的单调区间以及最值,且,讨论、或即可得出零点个数.
解:(1)设,
则,
所以在上递增,又,所以,
所以的解集为.
(2)①证明:由得,
即,又,
所以,
因为,所以“”不成立.
思路一:
设,,则,
所以在单调递减,
又,所以,即.
思路二:
假设,则,,所以,
这与矛盾,故.
②,
当时,,
令得(负值舍去).
所以当时,,为减函数,
当时,,为增函数.
又.
当,即时,有一个零点.
当,即时,由可知,
又,且,
所以,在有一个零点,故此时有两个零点;
当,即时,由可知,
令,则,
所以当时,,单调递增;
当时,,单调递减,所以,
故,则.
所以,所以,且,
所以,在有一个零点,故此时有两个零点.
综上,当时,有1个零点;
当且时,有2个零点.
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,M,M1分别为AB,A1B1中点.
(1)求证:C1M1∥面A1MC;
(2)若面ABC⊥面ABB1A1,△AB1B为正三角形,AB=2,BC=1,,求四棱锥B1﹣AA1C1C的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+acosx.
(1)求函数f(x)的奇偶性.并证明当|a|≤2时函数f(x)只有一个极值点;
(2)当a=π时,求f(x)的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把4个相同的小球全部放入2个不同的盒子里,每个盒子至少放1个球,不同的放法数记为;把4个不同的小球全部放入2个不同的盒子里,每个盒子至少放1个球,不同的放法数记为.现在从到的所有整数中(包括和两个整数)抽取3个数,则这3个数之和共有( )种结果.
A.26B.27C.28D.29
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,上顶点为A,过的直线与y轴交于点M,满足(O为坐标原点),且直线l与直线之间的距离为.
(1)求椭圆C的方程;
(2)在直线上是否存在点P,满足?存在,指出有几个这样的点(不必求出点的坐标);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在抗击新冠肺炎疫情期间,很多人积极参与了疫情防控的志愿者活动.各社区志愿者服务类型有:现场值班值守,社区消毒,远程教育宣传,心理咨询(每个志愿者仅参与一类服务).参与A,B,C三个社区的志愿者服务情况如下表:
社区 | 社区服务总人数 | 服务类型 | |||
现场值班值守 | 社区消毒 | 远程教育宣传 | 心理咨询 | ||
A | 100 | 30 | 30 | 20 | 20 |
B | 120 | 40 | 35 | 20 | 25 |
C | 150 | 50 | 40 | 30 | 30 |
(1)从上表三个社区的志愿者中任取1人,求此人来自于A社区,并且参与社区消毒工作的概率;
(2)从上表三个社区的志愿者中各任取1人调查情况,以X表示负责现场值班值守的人数,求X的分布列;
(3)已知A社区心理咨询满意率为0.85,B社区心理咨询满意率为0.95,C社区心理咨询满意率为0.9,“,,”分别表示A,B,C社区的人们对心理咨询满意,“,,”分别表示A,B,C社区的人们对心理咨询不满意,写出方差,,的大小关系.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.
(1)经过1轮投球,记甲的得分为,求的分布列;
(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.
①求;
②规定,经过计算机计算可估计得,请根据①中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线C:,过抛物线焦点F的直线交抛物线C于A,B两点,P是抛物线外一点,连接,分别交抛物线于点C,D,且,设,的中点分别为M,N.
(1)求证:轴;
(2)若,求面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com