精英家教网 > 高中数学 > 题目详情
导函数的最大值是原函数的最小值.
 
(判断对错)
考点:导数的概念
专题:导数的概念及应用
分析:导函数的最大值与原函数的最小值没有关系.
解答: 解:我们通常用导函数大于0,判断原函数单调增,导函数小于0,判断原函数单调减;
而导函数的最大值与原函数的最小值之间没有关系.
∴导函数的最大值是原函数的最小值,说法错误.
故答案为:错.
点评:本题考查了导数的概念与应用的问题,解题时应分清导函数与原函数的关系,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知i是虚数单位,则
2i
1+i
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx+cosx-1的最大值是0.
(1)求证:a=0;
(2)若f(x+
π
4
)=-
1
3
,求sin2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面ABCD是菱形,侧面PAD是等边三角形,O是AD的中点,∠ABC=120°.
(1)求证:平面ABCD⊥平面POB;
(2)若二面角P-AD-B是直二面角,E是PB的中点,求过直线AD与OE的平面截该四棱锥所成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界.已知函数f(x)=
ex
a
+
a
ex
,g(x)=log2
3+ax
x+3
.其中a<0
(1)若函数f(x)为偶函数,求实数a的值;
(2)在(1)的条件下,求函数g(x)在区间[-1,1]上的所有上界构成的集合;
(3)在(1)的条件下,是否存在这样的负实数k,使g(k-cosθ)+g(cos2θ-k2)≥0
对一切θ∈R恒成立,若存在,试求出k取值的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥E-ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,求证:
(1)AE∥平面BDF;
(2)平面BDF⊥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=
1
3
,|
b
|=6,
a
b
的夹角为
π
3
,则3|
a
|-2(
a
b
)+4|
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子里有完全相同的三个小球,球上分别标上数字2、1、4,随即摸出一个小球(不放回)),其数字为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是(  )
A、
2
3
B、
1
2
C、
1
3
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x≥1
x-y≤0
x+y-4≤0
,若目标函数z=ax+y取最大值时最优解不唯一,则a的值为(  )
A、-1B、0C、-1或1D、1

查看答案和解析>>

同步练习册答案