A. | 周期为4的奇函数 | B. | 周期为4的偶函数 | ||
C. | 周期为2π的奇函数 | D. | 周期为2π的偶函数 |
分析 根据三角函数的图象求出函数周期,表示出A,B的坐标,结合向量$\overrightarrow{OA}$•$\overrightarrow{OB}$=0求出ω,求出f(x+1)的表达式进行判断.
解答 解:函数的周期T=$\frac{2π}{ω}$,
则A点的横坐标为$\frac{1}{4}$T=$\frac{2π}{ω}$×$\frac{1}{4}$=$\frac{π}{2ω}$,B点的横坐标为$\frac{3}{4}$T=$\frac{2π}{ω}$×$\frac{3}{4}$=$\frac{3π}{2ω}$,
即A($\frac{π}{2ω}$,$\sqrt{3}$),B($\frac{3π}{2ω}$,$-\sqrt{3}$),
∵$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
∴($\frac{π}{2ω}$,$\sqrt{3}$)•($\frac{3π}{2ω}$,$-\sqrt{3}$)=0,
即$\frac{3{π}^{2}}{4{ω}^{2}}$-3=0,
解得ω=$\frac{π}{2}$,
即f(x)=$\sqrt{3}$sin$\frac{π}{2}$x,
则f(x+1)=$\sqrt{3}$sin$\frac{π}{2}$(x+1)=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{2}$)=$\sqrt{3}$cos$\frac{π}{2}$x,为偶函数,
周期T=$\frac{2π}{\frac{π}{2}}$=4,
故选:B.
点评 本题主要考查三角函数解析式的求解,利用向量数量积的关系求出ω是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{36}$ | B. | $\frac{3}{109}$ | C. | $\frac{{\sqrt{39}}}{13}$ | D. | $\frac{1}{18}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>b>c | B. | c>a>b | C. | b>a>c | D. | a>c>b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com