精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为 的极坐标方程为.

1求直线的交点的轨迹的方程;

(2)若曲线上存在4个点到直线的距离相等,求实数的取值范围.

【答案】(1)(2)

【解析】试题分析:(1)利用化为直角坐标方程,在进行消参,即可得直线的交点的轨迹的方程;(2)由(1)可得曲线表示圆心在,半径为的圆,可得点到直线的距离,再根据曲线上存在4个点到直线的距离相等,即可得实数的取值范围.

试题解析:(1的直角坐标方程为,可化为

的直角坐标方程为,可化为

从而有,整理得

时,也满足上式,

故直线的交点的轨迹的方程为

(2)由(1)知,曲线表示圆心在,半径为的圆,

到直线的距离为

∵曲线上存在4个点到直线的距离相等,

,解得

∴实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为连续10天,每天新增疑似病例不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是

A. 甲地:总体均值为3,中位数为4 B. 乙地:总体均值为1,总体方差大于0

C. 丙地:中位数为2,众数为3 D. 丁地:总体均值为2,总体方差为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了了解2018年当地居民网购消费情况,随机抽取了100人,对其2018年全年网购消费金额(单位:千元)进行了统计,所统计的金额均在区间内,并按,…,6组,制成如图所示的频率分布直方图.

(1)求图中的值;

(2)若将全年网购消费金额在20千元及以上者称为网购迷.结合图表数据,补全列联表,并判断是否有的把握认为样本数据中的网购迷与性别有关系?说明理由;

合计

网购迷

20

非网购迷

45

合计

下面的临界值表仅供参考:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用分别表示乌龟和兔子所行的路程,为时间,则与故事情节相吻合的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量小时都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量百斤与每个蔬菜大棚使用农夫1号液体肥料千克之间对应数据为如图所示的折线图.

(1)依据数据的折线图,用最小二乘法求出关于的线性回归方程并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量是多少斤?

(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:

周光照量单位:小时

30<X<50

光照控制仪最多可运行台数

3

2

1

若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?

附:回归方程系数公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点在倾斜角为的直线上,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的方程为.

(1)写出的参数方程及的直角坐标方程;

(2)设相交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线的焦点F在直线上。

(Ⅰ)求抛物线C的方程。

(Ⅱ)过点做互相垂直的两条直线与曲线C交于A,B两点,与曲线C交于E,F两点,线段AB、EF的中点分别为M、N,求证:直线MN过定点P,并求出定点P的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为打赢打好脱贫攻坚战,实现建档立卡贫困人员稳定增收,某地区把特色养殖确定为脱贫特色主导产业,助力乡村振兴.现计划建造一个室内面积为平方米的矩形温室大棚,并在温室大棚内建两个大小、形状完全相同的矩形养殖池,其中沿温室大棚前、后、左、右内墙各保留米宽的通道,两养殖池之间保留2米宽的通道.设温室的一边长度为米,如图所示.

1)将两个养殖池的总面积表示为的函数,并写出定义域;

2)当温室的边长取何值时,总面积最大?最大值是多少?

查看答案和解析>>

同步练习册答案