精英家教网 > 高中数学 > 题目详情
18.如图是一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的中位数为(  )
A.10B.11C.12D.1

分析 由茎叶图得该运动员在这五场比赛中得分从低到高为9,10,12,17,22,由此能求出该运动员在这五场比赛中得分的中位数.

解答 解:由茎叶图得该运动员在这五场比赛中得分从低到高为:
9,10,12,17,22,
位于中间的分数是12,
∴该运动员在这五场比赛中得分的中位数为12.
故选:C.

点评 本题考查中位数的求法,是基础题,解题时要认真审题,注意中位数的定义和茎叶图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)>f′(x),且f(0)=3,则不等式f(x)>3ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:x2-x≥6,命题q:|x-2|≤3;若p∧q与?q同时为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.随着电子商务的发展,人们的购物习惯正在改变,基本上所有的需求都可以通过网络购物解决.小韩是位网购达人,每次购买商品成功后都会对电商的商品和服务进行评价.现对其近年的200次成功交易进行评价统计,统计结果如表所示.
对服务好评对服务不满意合计
对商品好评8040120
对商品不满意701080
合计15050200
(1)是否有99.9%的把握认为商品好评与服务好评有关?请说明理由;
(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行观察,求只有一次好评的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A=[0,4),集合B={x|x2-2x≥3,x∈N},则A∩B=(  )
A.{x|3≤x<4}B.{x|0≤x<3}C.{3}D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.“中国式过马路”存在很大的交通安全隐患,某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性女性合计
反感10
不反感8
合计30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是$\frac{8}{15}$.
(Ⅰ)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料判断是否有95%的把握认为反感“中国式过马路”与性别有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|y=log2(5-2x),x∈N},B={x|3x(x-2)≤1},则A∩B等于(  )
A.{x|0≤x≤2}B.{x|1≤x<2}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:方程x2+mx+4=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=loga$\frac{1-mx}{x-1}$是奇函数(a>0,a≠1),则m的值等于-1.

查看答案和解析>>

同步练习册答案