精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,,,,分别为棱的中点.

(1)求证:∥平面

(2)若异面直线 所成角为,求三棱锥的体积.

【答案】(1)见解析;(2)

【解析】

分析:(1)的中点,连接, ,由棱柱的性质可得,,,再由面面平行的判定得到平面平面∥平面,,则答案得到证明;
(2)由(1)知知异面直线所成角,所以, ,进一步得到平面,,,再由已知求出的长度,把三棱锥的体积转化为 的体积求解.

详解:

(1)证明:取的中点,连接,

因为分别为棱的中点,所以,,

,同理可证,且,平面,

所以平面∥平面

平面,所以∥平面.

(2)由(1)知异面直线所成角,所以,

因为三棱柱为直三棱柱,所以平面,所以平面,

,又,,

.

,,平面,

所以 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差d>0,前n项和为Sn , 已知3 是﹣a2与a9的等比中项,S10=﹣20.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn(n≥6).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是方程的两根, 数列是公差为正的等差数列,数列的前项和为,且.

(1)求数列的通项公式

(2)记,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于n∈N* , 若数列{xn}满足xn+1﹣xn>1,则称这个数列为“K数列”.
(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数m的取值范围;
(Ⅱ)是否存在首项为﹣1的等差数列{an}为“K数列”,且其前n项和Sn满足 ?若存在,求出{an}的通项公式;若不存在,请说明理由;
(Ⅲ)已知各项均为正整数的等比数列{an}是“K数列”,数列 不是“K数列”,若 ,试判断数列{bn}是否为“K数列”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,设

1)求

2)判断数列是否为等比数列,并说明理由;

3)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在成立,则称的不动点.如果函数

有且只有两个不动点0,2,且

(1)求函数的解析式;

(2)已知各项不为零的数列,求数列通项

(3)如果数列满足,求证:当时,恒有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面四边形ABCD中,AB= ,BC=2,AC⊥CD,AC=CD,则四边形ABCD面积的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(1)求图中a的值;
(2)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

晋级成功

晋级失败

合计

16

50

合计

(参考公式:K2= ,其中n=a+b+c+d)

P(K2≥k)

0.40

0.25

0.15

0.10

0.05

0.025

k

0.780

1.323

2.072

2.706

3.841

5.024


(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图像如图所示,分别是图像的最低点和最高点,

(1)求函数的解析式;

(2)将函数的图像向左平移个单位长度,再把所得图像上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数的图像,求函数的单调递增区间.

查看答案和解析>>

同步练习册答案