【题目】如图,在直三棱柱中,,,,分别为棱的中点.
(1)求证:∥平面
(2)若异面直线与 所成角为,求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的公差d>0,前n项和为Sn , 已知3 是﹣a2与a9的等比中项,S10=﹣20.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn(n≥6).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于n∈N* , 若数列{xn}满足xn+1﹣xn>1,则称这个数列为“K数列”.
(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数m的取值范围;
(Ⅱ)是否存在首项为﹣1的等差数列{an}为“K数列”,且其前n项和Sn满足 ?若存在,求出{an}的通项公式;若不存在,请说明理由;
(Ⅲ)已知各项均为正整数的等比数列{an}是“K数列”,数列 不是“K数列”,若 ,试判断数列{bn}是否为“K数列”,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在成立,则称的不动点.如果函数
有且只有两个不动点0,2,且
(1)求函数的解析式;
(2)已知各项不为零的数列,求数列通项;
(3)如果数列满足,求证:当时,恒有成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(1)求图中a的值;
(2)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(参考公式:K2= ,其中n=a+b+c+d)
P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图像如图所示,分别是图像的最低点和最高点,
(1)求函数的解析式;
(2)将函数的图像向左平移个单位长度,再把所得图像上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数的图像,求函数的单调递增区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com