精英家教网 > 高中数学 > 题目详情

已知数列{an}满足S n + a n= 2n +1.
(1)写出a1a2a3, 并推测a n的表达式;
(2)用数学归纳法证明所得的结论.

(1) a1= a2=a3= an=  (2)用数学归纳法证明

解析试题分析:(1)由Sn+an=2n+1得a1= a2=a3=     3分
an=     6分
(2)证明:当n=1时,命题成立     7分
假设n=k时命题成立,即ak=      8分
n=k+1时,a1+ a 2+…+ ak + ak+1+ ak+1=2(k+1)+1      9分
a1+ a 2+…+ ak =2k+1-a k
∴2ak+1=4-      11分
ak+1=2-成立     12分
根据上述知对于任何自然数n,结论成立     13分
考点:本题考查了数学归纳法的运用
点评:运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列的前项和为,且对任意正整数,点都在直线上.
(1)求数列的通项公式;
(2)若求数列项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列前三项的和为,前三项的积为.
(Ⅰ)求等差数列的通项公式;
(Ⅱ)若,,成等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列,且数列是等差数列,是等比数列.
(1)求数列的通项公式;
(2)设数列的前项和为,求的表达式;
(3)数列满足,求数列的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是增函数
(1)求实数的取值集合
(2)当取值集合中的最小值时, 定义数列;满足, , 设, 证明:数列是等比数列, 并求数列的通项公式.
(3)若, 数列的前项和为, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数,且不等式对任意的实数恒成立,数列满足.
(1)求的值;
(2)求数列的通项公式;
(3)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正实数的数列的前项和为,且满足).
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的通项公式为),若)成等差数列,求的值;
(Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其三边长为数列中的三项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 正项数列{an}满足a1=2,点An)在双曲线y2-x2=1上,点()在直线y=-x+1上,其中Tn是数列{bn}的前n项和。
①求数列{an}、{bn}的通项公式;
②设Cn=anbn,证明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整数m的最小值。

查看答案和解析>>

同步练习册答案