精英家教网 > 高中数学 > 题目详情

如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,,四边形BDEF是矩形,平面BDEF⊥平面ABCDBF=3HCF的中点.

(Ⅰ)求证:AC⊥平面BDEF

(Ⅱ)求直线DH与平面所成角的正弦值;

(Ⅲ)求二面角的大小.

 

【答案】

(Ⅰ)答案详见解析;(Ⅱ);(Ⅲ).

【解析】

试题分析:(Ⅰ)要证明平面,只需证明垂直于面内的两条相交相交直线,由是菱形,故,再证明,从而可证明平面;(Ⅱ)由已知,选三条两两垂直的直线分别为x轴,y轴,z轴,建立空间直角坐标系,表示相关点的坐标,求直线的方向向量坐标,以及面法向量的坐标,设直线与平面所成角为,则;(Ⅲ)先求二面角两个半平面的法向量,再求法向量的夹角,通过观察二面角是锐二面角还是钝二面角,决定二面角余弦值的正负,该题中面的法向量就是,只需求面

的法向量即可.

试题解析:(Ⅰ)证明:因为四边形是菱形,所以 .

因为平面平面,且四边形是矩形,所以平面

又因为平面,所以 . 因为 ,所以 平面.

(Ⅱ)解:设,取中点,连接,因为四边形是矩形,分别为中点,所以 ,又因为 平面,所以 平面,由,得两两垂直.所以以为原点,所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系. 因为底面是边长为2的菱形,

所以 .

因为 平面 所以平面的法向量. 设直线与平面所成角为,由, 得 ,所以直线与平面所成角的正弦值为.

(Ⅲ)解:由(Ⅱ),得.设平面的法向量为

所以

,得. 平面,得平面的法向量为

. 由图可知二面角为锐角,

所以二面角的大小为.

考点:1、直线和平面垂直的判定定理;2、直线和平面所成的角;3、二面角.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)求证:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求证:AB1∥平面 A1C1C;
(Ⅱ)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)若D是BC的中点,求证:B1D∥平面A1C1C;
(3)若BC=2,求几何体ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•郑州二模)如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求证:A1B1⊥平面AA1C; 
(II)求证:AB1∥平面 A1C1C;
(II)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

同步练习册答案