精英家教网 > 高中数学 > 题目详情
若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)=(  )
A.x-1B.x+1C.2x+1D.3x+3
B
∵2f(x)-f(-x)=3x+1,①
将①中x换为-x,则有
2f(-x)-f(x)=-3x+1,②
①×2+②得3f(x)=3x+3,
∴f(x)=x+1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

建造一个容积为8,深为2的无盖水池,如果池底与池壁的造价每平方米分别是120元和80元,则水池的最低造价为           元.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15—0.1x万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:
(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元?
(2)每套丛书售价定为多少元时,单套丛书的利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在函数y=|x|(x∈[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系图象可表示为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(分)的关系.试写出y=f(x)的函数解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若在曲线上两个不同点处的切线重合,则称这条切线为曲线的“自公切线”.下列方程:①;②;③;④对应的曲线中存在“自公切线”的有(  )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在R上的函数f(x)满足f(m+n2)=f(m)+2[f(n)]2,m,n∈R,且f(1)≠0,则f(2 014)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数时取得最大值,在时取得最小值,则实数的取值范围为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案