精英家教网 > 高中数学 > 题目详情
14.已知集合A={a|一次函数y=(4a-1)x+b在R上是增函数},集合B=$\left.{\left\{{a|log_a^{\;}\frac{3}{4}<1}\right.}\right\}$.
(1)求集合A,B;
(2)设集合$C=(0,\frac{3}{4})$,求函数f(x)=x-$\frac{1}{x}$在A∩C上的值域.

分析 (1)根据一次函数的性质求出集合A,根据对数函数的性质求出集合B即可;(2)求出A∩B,结合f(x)的单调性求出f(x)的值域即可.

解答 解:(1)∵集合A={a|一次函数y=(4a-1)x+b在R上是增函数},
∴4a-1>0,解得:a>$\frac{1}{4}$,
故$A=(\frac{1}{4},+∞)$…(1分),
由$log_a^{\;}\frac{3}{4}<1$得:
当0<a<1时,loga$\frac{3}{4}$<1=logaa,解得:0<a<$\frac{3}{4}$,
当a>1时,loga$\frac{3}{4}$<1=logaa,解得:a>$\frac{3}{4}$,而a>1,故a>1,
∴$B=(0,\frac{3}{4})∪(1,+∞)$…(6分)
(2)$A∩C=(\frac{1}{4},\frac{3}{4})$…(7分)
∵函数y=x在(0,+∞)是增函数,
$y=\frac{1}{x}$在(0,+∞)上是减函数,
∴$f(x)=x-\frac{1}{x}$在(0,+∞)是增函数                        …(9分)
所以当$x∈(\frac{1}{4},\frac{3}{4})$时…(12分)
有$-\frac{15}{4}=f(\frac{1}{4})<f(x)<f(\frac{3}{4})=-\frac{7}{12}$…(11分)
即函数$f(x)=x-\frac{1}{x}$的值域是$(-\frac{15}{4},-\frac{7}{12})$…(12分)

点评 本题考查了函数的单调性、最值问题,考查对数函数的性质以及集合的运算,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=2,${a_{n+1}}=2-\frac{1}{a_n}$,数列{bn}中,${b_n}=\frac{1}{{{a_n}-1}}$,其中n∈N*
(1)求证:数列{bn}是等差数列;
(2)若Sn是数列{bn}的前n项和,求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示,O是坐标原点,两个正方形OABC、BDEF的顶点中,O、A、C、D、F五个点都在抛物线y2=2px(p>0)上,另外,B、E两个点都在x轴上,若这两个正方形的面积之和为10,则(  )
A.p=1B.p=2C.p=$\frac{1}{2}$D.p=$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,△ABC是边长为6的等边三角形,G是它的重心(三条中线的交点),过G的直线分别交线段AB、AC于E、F两点,∠AEG=θ.
(1)当$θ=\frac{π}{4}$时,求线段EG的长;
(2)当θ在区间$[\frac{π}{6},\frac{π}{2}]$上变化时,求$\frac{1}{EG}+\frac{1}{FG}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在正方体ABCD-A1B1C1D1中,若AD的中点为M,DD1的中点为N,则异面直线MN与BD所成角的大小是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.m,n是空间两条不同直线,α,β是两个不同平面,下面有四个命题:
①m⊥α,n∥β,α∥β⇒m⊥n
②m⊥n,α∥β,m⊥α⇒n∥β
③m⊥n,α∥β,m∥α⇒n⊥β
④m⊥α,m∥n,α∥β⇒n⊥β
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在直四棱柱(侧棱与底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,给出以下结论:
①异面直线A1B1与CD1所成的角为45°;
②D1C⊥AC1
③在棱DC上存在一点E,使D1E∥平面A1BD,这个点为DC的中点;
④在棱AA1上不存在点F,使三棱锥F-BCD的体积为直 四棱柱体积的$\frac{1}{5}$.
其中正确的有①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow a$=(2sinα,1),$\overrightarrow b$=(cosα,1),α∈(0,$\frac{π}{4}$).
(1)若$\overrightarrow a$∥$\overrightarrow b$,求tanα的值;
(2)若$\overrightarrow a$•$\overrightarrow b$=$\frac{9}{5}$,求sin(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了了解某校学生喜欢吃辣是否与性别有关,随机对此校100人进行调查,得到如下的列表:
喜欢吃辣不喜欢吃辣合计
男生40                  1050                           
女生2030                      50
合计6040100
已知在全部100人中随机抽取1人抽到喜欢吃辣的学生的概率为$\frac{3}{5}$.
p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(1)请将上面的列表补充完整;
(2)是否有99.9%以上的把握认为喜欢吃辣与性别有关?说明理由.

查看答案和解析>>

同步练习册答案