精英家教网 > 高中数学 > 题目详情
5.已知矩阵A=$({\begin{array}{l}1&2\\ y&4\end{array}})$,B=$({\begin{array}{l}x&6\\ 7&8\end{array}})$,AB=$({\begin{array}{l}{19}&{22}\\{43}&{50}\end{array}})$,则x+y=8.

分析 利用矩阵乘法法则求解.

解答 解:∵矩阵A=$({\begin{array}{l}1&2\\ y&4\end{array}})$,B=$({\begin{array}{l}x&6\\ 7&8\end{array}})$,AB=$({\begin{array}{l}{19}&{22}\\{43}&{50}\end{array}})$,
∴AB=$[\begin{array}{l}{1}&{2}\\{y}&{4}\end{array}]$$[\begin{array}{l}{x}&{6}\\{7}&{8}\end{array}]$=$[\begin{array}{l}{x+14}&{22}\\{xy+28}&{6y+32}\end{array}]$=$[\begin{array}{l}{19}&{22}\\{43}&{50}\end{array}]$,
∴$\left\{\begin{array}{l}{x+14=19}\\{xy+28=43}\\{6y+32=50}\end{array}\right.$,解得x=5,y=3,
∴x+y=8.
故答案为:8.

点评 本题考查代数式的值的求法,是基础题,解题时要认真审题,注意矩阵乘法法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=2msinx-ncosx,直线$x=\frac{π}{3}$是函数f(x)图象的一条对称轴,则$\frac{n}{m}$=-$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知${f_0}(x)=x{e^x},{f_1}(x)={f'_0}(x),{f_2}(x)={f'_1}(x),…,{f_n}(x)={f'_{n-1}}(x)(n∈{N^+})$.
(Ⅰ)请写出fn(x)的表达式(不需证明);
(Ⅱ)设fn(x)的极小值点为Pn(xn,yn),求yn
(Ⅲ)设${g_n}(x)=-{x^2}-2(n+1)x-8n+8$,gn(x)的最大值为a,fn(x)的最小值为b,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知m>n>0,x是m、n的等差中项,y是m、n的等比中项,则x,y的大小关系是(  )
A.x>yB.x=y
C.x<yD.大小不确定,与m、n的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.方程组$\left\{\begin{array}{l}3x+5y+6=0\\ 4x-3y-7=0\end{array}\right.$的增广矩阵是$[\begin{array}{l}{3}&{5}&{-6}\\{4}&{-3}&{7}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的最小正周期是π.若将f(x)的图象先向右平移$\frac{π}{6}$个单位,再向上平移$\sqrt{3}$个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若对任意x∈[0,$\frac{π}{3}$],f(x)+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥S-ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,E为SC的中点,SD=AD.
(1)求证:SA∥平面BDE;
(2)求直线SB与平面SAD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知实数x,y,z满足x+y+z=1,求3x2+2y2+2z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z=1+2i的虚部是(  )
A.-2iB.2iC.-2D.2

查看答案和解析>>

同步练习册答案