精英家教网 > 高中数学 > 题目详情

如图,在正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱B1C1,A1D1,D1D,AB的中点.

(1)求证:A1E⊥平面ABMN.

(2)平面直线A1E与MF所成的角.

答案:
解析:

  证明:(1)∵AB⊥平面A1ADD1

  而A1E平面A1ADD1

  ∴AB⊥A1E.在平面A1ADD1中,A1E⊥AN,

  ∵AN∩AB=A,∴A1E⊥平面ABMN.

  解:(2)由(1)知A1E⊥平面ABMN,而MF平面ABMN,∴A1E⊥MF,

  则A1E与MF所成的角为90°


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案