精英家教网 > 高中数学 > 题目详情
20.已知命题p:(x-3)(x+1)<0,命题q:$\frac{x-2}{x-4}$<0,命题r:a<x<2a,其中a>0.若p∧q是r的充分条件,求a的取值范围.

分析 分别求出满足P,q成立的x的范围,求出p∧q的范围,根据集合的包含关系得到关于a的不等式组,解出即可.

解答 解:由题可知,命题p:-1<x<3,
命题q:2<x<4,…..(2分)
故p∧q:2<x<3.…(4分)
根据a>0,及p∧q是r的充分条件可知:$\left\{\begin{array}{l}a≤2\\ 3≤2a\end{array}\right.$;…(8分)
解得 $\frac{3}{2}≤a≤2$,
综上可知,a的取值范围是$\left\{{\left.a\right|}\right.\frac{3}{2}≤a≤2\left.{\;}\right\}$.…(10分)

点评 本题考查了充分必要条件,考查复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.定义在R上的函数y=f(x)满足:f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x2,则f(2015)的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB=$\sqrt{2}$,AD=1,AB=2,BC=3.
(1)求证:SB⊥平面SAD;
(2)求二面角D-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图1,已知四边形BCDE为直角梯形,∠B=90°,BE∥CD,且BE=2CD=2BC=2,A为BE的中点.将△EDA沿AD折到△PDA位置(如图2),连结PC,PB构成一个四棱锥P-ABCD.

(Ⅰ)求证AD⊥PB;
(Ⅱ)若PA⊥平面ABCD.
①求二面角B-PC-D的大小;
②在棱PC上存在点M,满足$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1),使得直线AM与平面PBC所成的角为45°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知直角梯形ACEF与等腰梯形ABCD所在的平面互相垂直,EF∥AC,EF═$\frac{1}{2}$AC,EC⊥AC,AD=DC=CB=CE=$\frac{1}{2}$AB=1.
(Ⅰ)证明:BC⊥AE;
(Ⅱ)求二面角D-BE-F的余弦值;
(Ⅲ)判断直线DF与平面BCE的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图三角形数阵中,从第三行起,每行都是1为首项,公比为2的等比数列.求数阵的前n行各项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.化简$\frac{sin(2π-θ)cos(π+θ)cos(\frac{π}{2}+θ)cos(\frac{11π}{2}-θ)}{cos(π-θ)sin(3π-θ)sin(-π-θ)sin(\frac{9π}{2}+θ)}$的值是(  )
A.-tanθB.tanθC.-cosθD.sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设命题p:?x0∈(0,+∞),3x0+x0=$\frac{1}{2016}$;命题q:?x>0,x+$\frac{1}{x}$≥2,则下列命题为真命题的是(  )
A.p∧qB.(?p)∧qC.p∧(?q)D.(?p)∧(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,正方体ABCD-A1B1C1D1中,E是棱BC的中点,F是侧面BCC1B1上的动点,且A1F∥平面AD1E,则直线A1F与平面BCC1B1所成的角的正切值t构成的集合是(  )
A.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤$\frac{{2\sqrt{3}}}{3}}\right.}$}B.{t|{2≤t≤2$\sqrt{3}}$}C.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤2$\sqrt{3}$}D.{{t|{2≤t≤2$\sqrt{2}}$}

查看答案和解析>>

同步练习册答案